Software Open Access

pymccrgb: Color- and curvature-based classification of multispectral point clouds in Python

Robert Sare; George E. Hilley


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/f1ea6efe-31e0-4165-b500-5317d1b8d4b9/rmsare/pymccrgb-v0.1.6.zip"
      }, 
      "checksum": "md5:5a5fe803d7ff34959c3407470ae3f631", 
      "bucket": "f1ea6efe-31e0-4165-b500-5317d1b8d4b9", 
      "key": "rmsare/pymccrgb-v0.1.6.zip", 
      "type": "zip", 
      "size": 4478786
    }
  ], 
  "owners": [
    55498
  ], 
  "doi": "10.5281/zenodo.3519582", 
  "stats": {
    "version_unique_downloads": 0.0, 
    "unique_views": 9.0, 
    "views": 19.0, 
    "downloads": 0.0, 
    "unique_downloads": 0.0, 
    "version_unique_views": 9.0, 
    "volume": 0.0, 
    "version_downloads": 0.0, 
    "version_views": 19.0, 
    "version_volume": 0.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3519582", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3514375", 
    "bucket": "https://zenodo.org/api/files/f1ea6efe-31e0-4165-b500-5317d1b8d4b9", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3514375.svg", 
    "html": "https://zenodo.org/record/3519582", 
    "latest_html": "https://zenodo.org/record/3519582", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3519582.svg", 
    "latest": "https://zenodo.org/api/records/3519582"
  }, 
  "conceptdoi": "10.5281/zenodo.3514375", 
  "created": "2019-10-26T05:06:57.029733+00:00", 
  "updated": "2019-11-01T07:14:01.146430+00:00", 
  "conceptrecid": "3514375", 
  "revision": 6, 
  "id": 3519582, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3519582", 
    "description": "<p>pymccrgb is a Python package for classifying ground and vegetation points in point cloud data with color attributes. It implements a new color-based algorithm (MCC-RGB) and provides a Cython wrapper for a popular height-based lidar classification algorithm (MCC), currently the only Python interfaces for these methods. We intend it to be broadly useful to earth and planetary scientists analyzing lidar or photogrammetric data.</p>", 
    "license": {
      "id": "other-open"
    }, 
    "title": "pymccrgb: Color- and curvature-based classification of multispectral point clouds in Python", 
    "relations": {
      "version": [
        {
          "count": 3, 
          "index": 2, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3514375"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3519582"
          }
        }
      ]
    }, 
    "version": "v0.1.6", 
    "publication_date": "2019-10-26", 
    "creators": [
      {
        "orcid": "0000-0003-3711-6771", 
        "affiliation": "Department of Geological Sciences, Stanford University", 
        "name": "Robert Sare"
      }, 
      {
        "orcid": "0000-0002-1761-7547", 
        "affiliation": "Department of Geological Sciences, Stanford University", 
        "name": "George E. Hilley"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "software", 
      "title": "Software"
    }, 
    "related_identifiers": [
      {
        "scheme": "url", 
        "identifier": "https://github.com/rmsare/pymccrgb/tree/v0.1.6", 
        "relation": "isSupplementTo"
      }, 
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3514375", 
        "relation": "isVersionOf"
      }
    ]
  }
}
19
0
views
downloads
All versions This version
Views 1919
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 99
Unique downloads 00

Share

Cite as