Conference paper Open Access

Animated Motions of Exceptional Flexible Instances of Generically Rigid Graphs

Grasegger, Georg; Legerský, Jan; Schicho, Josef


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Rigid Graph</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Flexible Instance</subfield>
  </datafield>
  <controlfield tag="005">20200120153237.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">This entry contains the paper (see below the preview) and animations in svg file format collected in a zip file.&lt;p&gt;&lt;/p&gt;&lt;p&gt;

Original publication available at https://archive.bridgesmathart.org/2019/bridges2019-255.html&lt;/p&gt;</subfield>
  </datafield>
  <controlfield tag="001">3518805</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">July 16-20, 2019</subfield>
    <subfield code="a">Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture</subfield>
    <subfield code="c">Linz</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz</subfield>
    <subfield code="0">(orcid)0000-0002-8122-668X</subfield>
    <subfield code="a">Legerský, Jan</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz</subfield>
    <subfield code="0">(orcid)0000-0002-5556-4001</subfield>
    <subfield code="a">Schicho, Josef</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">771935</subfield>
    <subfield code="z">md5:703fe4bb361f2689a81ecaffa39d85e5</subfield>
    <subfield code="u">https://zenodo.org/record/3518805/files/Animations.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2585896</subfield>
    <subfield code="z">md5:82986399a866d2e8ecbc07ac5528d6ac</subfield>
    <subfield code="u">https://zenodo.org/record/3518805/files/FlexibleGraphs.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://bridgesmathart.org/bridges-2019/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-06-27</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3518805</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences</subfield>
    <subfield code="0">(orcid)0000-0001-7421-8115</subfield>
    <subfield code="a">Grasegger, Georg</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Animated Motions of Exceptional Flexible Instances of Generically Rigid Graphs</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">P 31061</subfield>
    <subfield code="a">The Algebra of Motions in 3-Space</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">W 1214</subfield>
    <subfield code="a">Computational Mathematics: Numerical Analysis and Symbolic Computation</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">P 31888</subfield>
    <subfield code="a">Realizations of Rigid Graphs</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">675789</subfield>
    <subfield code="a">Algebraic Representations in Computer-Aided Design for complEx Shapes</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In this paper we use a recent algorithm for finding flexible realizations of graphs. In particular we consider generically rigid graphs that have special non-generic instances in which edge lengths can be found such that we get a continuous motion. The graphs we present have a symmetric structure and allow flexible unit distance realizations.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">isbn</subfield>
    <subfield code="i">isPartOf</subfield>
    <subfield code="a">978-1-938664-30-4</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isPartOf</subfield>
    <subfield code="a">1099-6702</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3518804</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="b">Tessellations Publishing</subfield>
    <subfield code="a">Phoenix, Arizona</subfield>
    <subfield code="z">978-1-938664-30-4</subfield>
    <subfield code="t">BridgesLinz 2019 Conference Proceedings</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3518805</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
60
24
views
downloads
All versions This version
Views 6060
Downloads 2424
Data volume 53.0 MB53.0 MB
Unique views 5050
Unique downloads 1919

Share

Cite as