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Do environmental characteristics predict spatial memory
about unfamiliar environments?
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ABSTRACT
Using Space Syntax techniques, we examined the relationship
between environmental properties and spatial memory follow-
ing navigation in a virtual environment. Participants navigated
two main routes as well as two connector routes, memorizing
landmark locations in the main routes. Memory was then
examined through a pointing task and a model-building task.
Participants pointed more accurately to locations of higher
axial connectivity, integration, and choice, but pointed less
accurately from those locations. Converging results were
obtained with measures of visual connectivity, integration,
and through vision. The findings suggest that environmental
properties – including connectivity and integration, the loca-
tions’ intervisibility, and their grouping on the route type
(same vs. different) – account well for the way spatial informa-
tion is stored in and retrieved from memory.
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Navigation; virtual
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In the course of their everyday life, people navigate familiar and unfamiliar
environments, processing information about the locations of buildings and
the spatial relations among them. This information is stored in mental
representations that allow people to perform a variety of spatial actions,
such as finding their way in a city, computing shortcuts, providing directions
to others, and more. A major undertaking in spatial cognition research has
been to understand the factors that influence the organizational structure of
mental representations of space at the behavioral (e.g., Avraamides & Kelly,
2008; Kelly, Siegel, Sjolund & Avraamides, 2018; Mou & McNamara, 2002;
Waller & Hodgson, 2006) and at the neural level (e.g., Epstein, Patai, Julian &
Spiers, 2017; see also Hartley & Burgess, 2005 for a review). Building on prior
research on the topic, the current study aims to examine the role of environ-
mental characteristics in the encoding and retrieval of spatial information.

A number of studies have shown that environmental characteristics, such
as the spatial arrangement of buildings and other features of space influence
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the way people represent spatial information in memory. For example,
Werner and Schmidt (1999) demonstrated that the intrinsic axes formed by
streets in a familiar city influence the organization of spatial memory. In
their study, participants were asked to imagine themselves at the intersection
of two major streets of their city while facing in different directions, and to
point toward various landmarks. Participants pointed to buildings faster and
more accurately when the imagined heading they adopted was aligned with
one of the major streets in the intersection compared to all other imagined
headings. This finding suggested that, to respond, people relied on a memory
representation that was organized around the reference axes formed by the
intersection of the main streets.

Although this and other studies with small-scale (e.g., Galati & Avraamides,
2015; Kelly, 2011; Kelly et al., 2018; Mou & McNamara, 2002) and large-scale
configurations (e.g., Montello, 1991; for a discussion see Carlson, Holscher,
Shipley & Dalton, 2010) provide evidence that environmental cues influence
how people select and mentally represent a spatial layout in memory, it is not
entirely known how formal environmental properties impact spatial memory
organization. The current study addresses this issue by examining the relation-
ship between spatial memory and environmental information as captured by
Space Syntax measures.

Space Syntax is an architectural analytic tool that has been leveraged not only
by architects, but also by other scientists (including cognitive scientists, psychol-
ogists, and geographers) to investigate the relationship between properties of
space and human behavior in it (Barton, Valtchanov & Ellard, 2014; Dalton,
Hölscher & Turner, 2012; Emo, Al-Sayed & Varoudis, 2016; Hillier & Hanson,
1984; Hillier & Vaughan, 2007; Kim& Penn, 2004; Li & Klippel, 2016; Nubani &
Wineman, 2005; Penn, 2003; Peponis, Ross & Rashid, 1997). In the present
study, we examine how well measures derived from two popular Space Syntax
techniques–the Axial Map Analysis and the Visibility Graph Analysis (VGA)–
predict performance in spatial memory tasks following navigation of a virtual
environment.

Before reviewing studies that have examined the relationship between
Space Syntax measures and environmental behavior, we provide a brief over-
view of the Axial Map Analysis and VGA techniques and describe the
measures commonly derived from these techniques.

0.1. Space Syntax techniques and associated measures

The Axial Map is a graphical representation of the structure of space, where
roads in an urban environment are represented as axial lines, i.e., the fewest and
longest straight lines of sight from a specific location (Bafna, 2003; Hillier &
Hanson, 1984; Hillier & Vaughan, 2007; Kostakos, 2010; Turner, Penn &Hillier,
2005). For the purpose of analysis, the axial map is transformed to a graph where
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each axial line is transformed into a node and each intersection of two nodes into
a link. Once constructed, the graph affords two types of analysis: a first-order
analysis of properties such as the axial integration, the axial connectivity, and the
axial choice and a second-order analysis that includes intelligibility.

Axial integration is a global measure that reflects the relative accessibility
of a particular location within an environment (or node in the graph). It is
computed by averaging the number of turns that must be made to reach the
location/node from all others. It therefore provides information about how
well individual nodes are interconnected with the graph as a whole. Nodes
that can be reached more easily (through fewer turns) from many other
nodes have high axial integration values, whereas nodes that are more
difficult to reach (involving more turns) have lower axial integration values.

Axial connectivity is a local measure that refers to the number of other
nodes that intersect a given node, or put more simply, the number of direct
connections that each node has to other nodes. A high axial connectivity
value indicates that a node is connected to many other nodes, whereas a low
axial value means that it has only few connections.

Axial choice is a global dynamic measure that reflects the “flow” through
space, capturing how likely it is for a location/node to be passed through
when considering the shortest paths between all pairs of nodes. A high axial
choice value indicates that a node is frequently used, whereas a low axial
choice value indicates nodes that fall on fewer paths.

Finally, intelligibility is a second-order measure derived from Axial Map
Analysis, which is defined as a correlation between axial integration and axial
connectivity measures.

Another approach for quantifying a spatial environment is VGA, an analytic
tool that measures the extent to which any point in a space is visible from any
other (Turner, Doxa, O’Sullivan & Penn, 2001). To perform a VGA, a grid of
points is first superimposed onto a 2D layout of a space. Then, for each point, all
other points that are visible are found and a vertex is added to the graph for each.
The set of visible vertices is then stored (Turner, 2001, 2007a). Several measures
can then be obtained from the resulting visibility graph, including the measures
of visual connectivity, visual integration and through vision. Visual connectivity
is a local measure that captures the amount of space directly visible from a point,
whereas visual integration of a point is a global measure that captures the
number of visual steps it takes to get from that point to any other point within
the system. Through vision is a local measure that captures for a grid cell the
number of lines of visibility passing through that cell.
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0.2. Studies examining the relationship between Space Syntax measures
and environmental behavior

Metrics derived from the Space Syntax methods have been leveraged by
researchers to examine the relationship between environmental properties and
spatial behavior (e.g., Haq & Zimring, 2003; Hölscher, Brösamle & Vrachliotis,
2012). For example, in a study by Emo, Hoelscher, Wiener and Dalton (2012;
also, Emo, 2014), participants viewed photographs of unfamiliar urban street
corners and were asked to make left vs. right route decisions. Participants chose
more often the turn toward the more integrated streets, as quantified by the
Axial Map Analysis. Moreover, in a study that involved both free exploration
and directed search in hospital buildings, Haq and Zimring (2003) showed that
axial connectivity was a good predictor of wayfinding behavior and sketch map
quality. Intelligibility (from Axial Map Analysis) has also been shown to predict
spatial behavior. For example, Conroy (2001) showed that participants were
better oriented and able to find their way back to the starting position when
navigating an intelligible than an unintelligible environment.

Measures derived from VGA have also been shown to be reliable predic-
tors of spatial behavior. For example, Bendjedidi, Bada and Meziani (2019)
showed that visual connectivity and visual integration predicted human
behavior at urban public spaces: areas in plazas with higher connectivity
and integration scores were associated with more visitors. Moreover, Desyllas
and Duxbury (2001) showed that measures from VGA correlated more
strongly with pedestrian movement in a central London area compared to
measures from the Axial Map Analysis.

Beyond evidence that Space Syntax measures can predict human behavior in
space, a study by Dara-Abrams (2005) provided support for the idea that Space
Syntax measures may also capture aspects of spatial memory organization. In
this study, Dara-Abrams examined whether axial integration correlates with
spatial memory about a familiar environment. He used 12 pairs of buildings
from the participants’ campus, with buildings selected from axial lines with
contrasting integration values (i.e., one building of the pair was located on a high
integration street and the other on a low integration street). Participants, then,
carried out two spatial memory tasks. The pointing task required that partici-
pants imagine themselves standing next to one building of the campus and point
to the other building from that pair. The model-building task required partici-
pants to create a model of the campus by dragging and dropping the pictures of
the buildings on a rectangular outline presented on the computer screen, to
indicate their location and orientation on the model. In the pointing task, when
participants imagined standing at well-integrated buildings, they pointed more
accurately to the other buildings (of low integration) compared to when they
stood at low-integration buildings. Likewise, in the model-building task, the
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axial integration value of the starting building significantly predicted the accu-
racy of the arrangement of the 12 pairs of buildings in the model-building task.

The study of Dara-Abrams (2005) suggests that environmental properties
quantified through Space Syntax are associated with the spatial representations
of the environment that people construct. However, the fact that a familiar
environment was used in that study leaves open the possibility that the results
may not generalize to other contexts. For instance, Dara-Abrams’s (2005)
finding that people pointed more accurately from buildings in well-integrated
nodes and created a better map-representation for them could be due to the fact
that they had walked those routes more often. Thus, when examining the spatial
representations of familiar environments, it’s impossible to dissociate the rela-
tive contribution of environmental properties (e.g., axial integration and con-
nectivity) from the level of actual experience people have with particular routes.
This concern is reinforced by previous research suggesting that environmental
features (e.g., high axial integration) can support behavioral choices in unfami-
liar environments that may ultimately lead to increased familiarity. For instance,
as we noted, when people make wayfinding decisions for unfamiliar urban street
corners shown in pictures, they prefer taking highly integrated streets (Emo,
2014; Emo et al., 2012). Thus, it is possible that highly integrated streets elicit
more experience over time, affecting indirectly spatial performance. The present
study overcomes this limitation by investigating whether space syntax measures
can predict spatial memory performance for an unfamiliar environment (i.e., an
environment that was experienced for the first time during the experiment) in
which participants follow pre-determined routes.

0.3. The present study

In our study, participants navigated two main routes in a virtual model of an
unfamiliar university campus (Virtual SILCton; Figure 1). Various buildings
were encountered in each route, but participants were asked to memorize the
names and locations of four buildings per route that were identified by their
names posted on signs in front of them. Once they navigated the two main
routes, participants navigated two additional routes that provided connec-
tions between the two initial routes, but depicted no additional landmarks to
memorize. Next, participants completed two memory tests. In the pointing
task, they carried out a series of trials in which, after being teleported in front
of a landmark building (standpoint) in the virtual environment, they pointed
to the location of another building (target building) (Figure 2a). The two
buildings in each pointing trial could be located either on the same route or
on different routes. In the model-building task, participants had to drag and
drop the pictures of the eight buildings (shown from a top-down perspective)
into a rectangle on their computer screen in order to create a map of the
virtual environment they had experienced (Figure 2b). Finally, participants
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completed the Santa Barbara Sense of Direction questionnaire, a self-report
measure of spatial ability.

Using Axial Map Analysis, we computed the axial connectivity, integra-
tion, and choice values for each building in the environment in order to
assess how these values related to performance in the spatial memory tasks.
Using VGA, we also computed visual connectivity, visual integration and
through vision values for each building, going beyond the study of Dara-
Abrams (2005).

In addition to these metrics, we also examined the influence of two
additional environmental factors: whether buildings were experienced as
part of the same or different routes, and whether buildings were visible
from each other if on the same route. By comparing performance pertaining
to the same vs. different routes (i.e., of pointing performance for pairs from
the same vs. different route, and of model reconstruction performance for the
set of buildings from the same vs. different route), we can gain insight into
whether participants integrated the two routes into a single spatial represen-
tation or kept them separate in memory (see Adamou, Avraamides & Kelly,
2013; Ishikawa & Montello, 2006; Weisberg, Schinazi, Newcombe, Shipley &
Epstein, 2014).

Figure 1. Schematic map for the virtual environment with the four routes and the critical
buildings (publicly available at the Virtual SILCton OSF repository: https://osf.io/w7pmh). Red
lines indicate Main Routes and blue lines Connecting Routes. A1 and B1 are the start points of
Routes A and B, respectively, and A2 and B2 are the corresponding end points.
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Figure 2. a. Screenshot from the pointing task. Participants could use the mouse to rotate their
viewpoint and the crosshair attached to it, along the horizontal plane. b. Screenshot from the
onset of the Model-building task. Participants dragged and dropped buildings into the rectan-
gular frame.
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We made the following main predictions:

(1) We expected that the integration scores from the Axial Map Analysis
would predict performance for the pointing task. Using pairs of
buildings with contrasting integration values, Dara-Abrams (2005)
found that participants pointed more accurately from buildings of
high axial integration to buildings with low axial integration than vice-
versa. Thus, better performance could have resulted from either the
high axial integration of the standing location or the low axial integra-
tion of the target location. We expect that our results will allow us to
resolve this ambiguity, albeit for a newly-learned environment. We
were interested to explore whether, beyond axial integration, axial
connectivity and axial choice, as well as visual integration, visual
connectivity and through vision from VGA, are also predictive of
pointing performance. To our knowledge, this has yet to be explored
in prior studies.

(2) We expected that pointing to buildings within the same route would
be more accurate than pointing to buildings across different routes.
This prediction follows previous studies indicating that people typi-
cally maintain spatial information from separate routes or spatial
arrays in separate representations (e.g., Weisberg et al., 2014, which
used the same virtual environment as here, as well as Ishikawa &
Montello, 2006; Meilinger, Berthoz & Wiener, 2011; Pantelides, Kelly
& Avraamides, 2016; Weisberg & Newcombe, 2016; but see Moar &
Carleton, 1982). Such a finding would support the hypothesis that
people encode spatial relations hierarchically (Hirtle & Jonides, 1985)
and replicate the results of previous studies using pointing tasks (e.g.,
Weisberg & Newcombe, 2016).

(3) Following the reasoning outlined above, we expected that performance
on the model building task would be inferior for the entire model
(with all eight buildings) than for each of the two routes (with subsets
of four buildings), providing further support for the maintenance of
separate spatial representations in memory1 Such a finding would
replicate conceptually, by using a task other than pointing, the prior
finding that spatial relationships among landmarks experienced in
separate routes are not well integrated in a single representation
(Meilinger et al., 2011; Pantelides et al., 2016; Weisberg et al., 2014;
Weisberg & Newcombe, 2016; but see Moar & Carleton, 1982).

1We did not examine how Space Syntax values predict performance on the model building task as this task yields
a single measure of performance for the entire environment (or alternatively, a score for each of the subsets of
buildings from the two routes). This makes it impossible to assess the relationship between task performance and
measures of connectivity and integration associated with the individual landmarks in the environment..
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1. Method

1.1. Participants

Sixty-five students (19 male) from the University of Cyprus, with mean
age of 21.6 years (SD= 3.6 years), participated in the experiment. Twenty-
nine participants received course credit for participating, while the
remaining participants received monetary reimbursement (10 €). All par-
ticipants signed an informed consent form before the experiment session
and were thoroughly debriefed afterward.

1.2. Materials

1.2.1. The virtual environment
The experiment used the Virtual SILCton, a virtual model based on the Ambler
campus of Temple University, created in the Unity3D engine (www.unity3d.
com; for more information, see Schinazi, Nardi, Newcombe, Shipley & Epstein,
2013; Weisberg et al., 2014; Galati, Weisberg, Newcombe & Avraamides, 2018).
The virtual environment was projected on a large 295 cm by 180 cm projection
screen and was viewed by participants sitting in front of it at a distance of
200 cm. Participants navigated the environment using the keyboard and the
mouse. Simulated movement was effected through the arrow keys on the key-
board, while the mouse was used to rotate the viewpoint up to 360° horizontally
and 120° vertically.

1.2.2. Self-report measure of spatial ability
To capture individual differences in spatial ability, participants completed
the Santa Barbara Sense of Direction scale (Hegarty, Richardson,
Montello, Lovelace & Subbiah, 2002). SBSOD is a unidimensional measure
of sense of direction, consisting of 15 items in a 7-point Likert scale, with
Cronbach’s a = .88. It measures how good navigator participants feel they
are, with lower scores indicating lower navigation ability (sample: “I
usually remember a path that I have walked once”). Although participants
completed all 15 items of the SBSOD scale, our analyses here are based on
a subset of 10 items (referred to as the SBSOD-CY scale). This was
because earlier work has suggested that only these 10 items are suitable
for measuring SOD in the Greek-Cypriot population (Shimi, Avraamides
& Fanti, 2008). We expected that participants with higher self-reported
ability would perform better on the memory tasks (Hegarty et al., 2002;
Weisberg et al., 2014).

1.2.3. Space Syntax measures
Both the Axial Map and the VGA analyses of the virtual environment
were performed using the DepthmapX software 0.50 (Turner, 2004, 2007b;
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Varoudis, 2012). Once the medium resolution axial map model was
created (Figure A1, Appendix), axial integration (Figure 3a), axial con-
nectivity (Figure 3b) and axial choice (Figure 3c) values were computed
for each node in the environment (Tables A1 and A2, Appendix). Each
building in the analyses was assigned the values of the nodes on which the
main entrance of that building was located. Overall, the environment had
a high intelligibility value, r= .820, p= .001. Once the knee level2 graph
was created, visual integration (Figure 4a), visual connectivity (Figure 4b)
and through vision (Figure 4c) values were computed for each node in the
environment using the VGA. Each building in the analyses was assigned
the average value of the selected grid cells on which the main entrance of
that building was located. The selection of grid cells was hand-coded and
represented the features of visual spaces from the participant’s standing
location.

1.3. Design and procedure

First, participants spent a few minutes becoming familiar with the virtual
environment and the controls for moving in it and looking around. Once
they had indicated comfort and familiarity, they proceeded to the study
phase. During this phase, they were asked to navigate four different routes,
first the two main (routes indicated with red lines in Figure 1) and then the
two connector routes (routes indicated with blue lines in Figure 1). Each of
the main routes (Route A and Route B; Figure 1) contained four landmark
buildings3, the names and locations of which participants had to memorize.
Participants were told that after navigating the environment their memory of
the environment would be tested, but they were not explicitly informed about
the nature of these memory tests.

The landmark buildings that participants were asked to remember in the
main routes were indicated by visual cues. They were marked with a blue
diamond that hovered in the middle of the road. The name of each building
was also written on a signpost in front of each building. Participants were
informed that the blue diamond indicated a landmark building and that the
name of the buildings would be signposted.

Prior to navigating the two connector routes, participants were instructed
to pay attention to how the two main routes were connected. Each of the

2Note that we have used a “stand-alone” version of the virtual campus (Schinazi et al., 2013), which was not
embedded in a wider urban environment because Virtual SILCton is not an exact model of the real campus.
When participants navigated the virtual environment, they could only walk on the predetermined roads but not
on other roads or the open fields. We therefore modeled the campus in a knee level graph. For the graph, we
took into account elements that were both visible and accessible.

3Note that certain buildings in the main routes are mutually visible. Specifically, in Route A there are three
intervisible buildings, Batty House – Lynch Station, Lynch Station – Harris Hall, Harris Hall – Harvey House, and in
Route B there are four intervisible buildings, Golledge Hall – Snow Church, Golledge Hall – Tobler Museum, Sauer
Center – Tobler Museum, Snow Church – Sauer Center.
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Figure 3. Measures from the Axial Map Analysis for a. integration, b. connectivity, c. choice. The
range runs from blue (for low values) through green and yellow to red (for high values).
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Figure 4. a. Measures from the visibility graph analysis for a. integration, b. connectivity,
c. through vision. The range runs from blue (for low values) through green and yellow to red
(for high values).

12 M. PAGKRATIDOU ET AL.



connector routes led participants from one main route to the other, provid-
ing information on how the routes were spatially related to each other in the
environment. Connector routes started from locations that were near the
main routes (but not on the main routes), but from which landmarks from
a main route were, at least partially, visible (see Figure 1). The connector
routes did not involve any additional buildings other than the eight buildings
learned in the two main routes. For all routes, participants traveled from the
start to the finish and back, following arrows on the ground, and had
unlimited time to complete navigation. Time to complete navigation was
not recorded.

The presentation order of the two main routes and the two connector
routes was counterbalanced across participants, with each participant experi-
encing one of the following route orders: ABCD, ABDC, BACD, BADC,
where A and B indicate the identity of the two main routes, and C and D the
identity of the two connector routes.

Following the navigation phase participants started the testing phase,
which involved two memory tasks. In the pointing task that was carried
out first, participants were teleported in front of one of the buildings in the
virtual environment, initially having the entrance of that building behind
them and facing in a random direction. They were asked to point to the
direction of other buildings (e.g. “Point to Harvey House”), by rotating in the
horizontal plane a crosshair that appeared on the center of the screen linked
to the viewpoint (Figure 2a). The order of the standpoints from which
participants pointed followed the order in which the buildings were encoun-
tered during the study phase, whereas target buildings appeared in
a randomized order. The task was completed when participants had pointed
from all eight buildings to all other buildings. This resulted in a total of 56
trials (24 trials involving landmarks from the same route and 32 trials
involving landmarks from different routes). Pointing error was measured
by computing the unsigned angular deviation of an executed response from
the correct one. In Virtual SILCton, the correct response is computed from
the front door of a building.

In the model-building task that followed, participants constructed from
memory a model of the virtual environment they had experienced.
A rectangular frame was shown on the screen along with top-down perspec-
tive pictures of the eight buildings. Pictures were presented in the same fixed
orientation to all participants (Figure 2b); they could not be rotated.
Participants were told that the rectangular frame represented the entire
virtual environment they had navigated and that they should drag and
drop each building at the correct location in it, without being able to rotate
them in the model task. Participants could adjust the building positions as
much as they needed to. Performance on the model-building task was
assessed using bidimensional regression analysis (Friedman & Kohler, 2003;
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Tobler, 1994), which involves a Euclidean transformation to the set of
dependent A-B points (the participant’s placement of the buildings) to
match the fixed independent X-Y points (the veridical coordinates of the
buildings).

After the testing phase, participants completed the Santa Barbara Sense
of Direction scale, and then they were debriefed about the purpose of the
study.

1.4. Data and code sharing

De-identified data files, along with code for preparing the data, specifying
planned contrasts, and testing the statistical models, are available through
our OSF repository for the project (https://osf.io/nw2bq/).

2. Results

Our analytic approach involved, first, examining through a linear mixed-effects
model whether Space Syntax measures predicted performance in the pointing
task (Prediction 1). Through the same linear mixed-effects models, we also
examined whether the type of pointing judgment (between- and within-route
pointing) predicted performance in the pointing task (Prediction 2a). In
a separate set of analyses, we first obtained measures of participants’ perfor-
mance on the model-building task using bidimensional regression analysis, and
then used ordinary least squares regression to examine whether reconstructions
were more accurate for subsets of buildings from the same vs. different routes
(Prediction 2b). Finally, we conducted exploratory correlations to examine the
relation between SBSOD-CY scores and performance in the memory tasks.

2.1. Performance on pointing task: examining the contribution of Space
Syntax measures and the type of pointing judgment

Our primary focus was on whether Space Syntax measures predicted absolute
pointing error – the performance measure obtained from the pointing task
(Prediction 1). There were 3613 complete observations in the dataset across
the 65 participants (1546 from trials involving landmarks from the same
route and 2067 involving landmarks from different routes). Since each
building in the system could appear in a pointing trial as either a target or
a standpoint, we considered as predictors the Space Syntax measures of
buildings both as targets and as standpoints. We built a total of five separate
models with predictors for the: (a) axial connectivity, (b) axial integration,
and (c) axial choice obtained from Axial Map Analysis, and (d) the visual
connectivity, (e) visual integration and (f) through vision obtained from the
VGA. Through these models, we also examined whether the type of
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judgment on a given trial (same vs. different route) predicted pointing
performance (Prediction 2).

Toward that end, using the lme4 library (Bates et al., 2015) in R (R Core
Team, 2018), we built five linear mixed-effects models with each Space
Syntax measure as the main predictor of interest. As noted, each model had
as predictors the Space Syntax measure of interest of the standpoint and of
the target of a trial4 In addition, each model had fixed effects for trial type
(same vs. different route; within-participants), gender and route order
(both between-participants), along with all the interactions of these three
factors. Participants were modeled as random effects. Each model’s random
effect structure included random intercepts and slopes for trial type.
Planned contrasts compared absolute pointing error on same vs. different
trials (contrast coded as: same = −0.5, different = 0.5), male vs. female
participants (male = −0.5, female = 0.5), and the two route orders for the
two main routes (order 1 (AB) = −0.5, order 2 (BA) = 0.5). For each model,
we report the unstandardized coefficients of the models’ predictors, along
with their standard error, their t-statistic and associated p-values (Tables 1
and 3).

2.1.1. Models with predictors from Axial Map Analysis
For the model with axial connectivity predictors obtained from Axial Map
Analysis, the overall variance explained by fixed and random factors together
was 18.38%. The model with the axial integration predictors obtained from
Axial Map Analysis explained 18.13% of the overall variance. The model with
the axial choice predictors obtained from Axial Map Analysis explained
14.77% of the overall variance. These effect sizes were computed using the
MuMIn statistical package in R (Johnson, 2014).

As the models in Table 1 suggest, the axial connectivity, axial integra-
tion, and axial choice of landmarks significantly predicted pointing accu-
racy. Specifically, the axial integration and axial choice of target
landmarks had a significant negative coefficient whereas the axial integra-
tion and axial choice of standpoints had a significant positive coefficient.
This suggests that participants were more accurate (made smaller errors)
pointing to targets with higher axial integration and greater axial choice,
but were less accurate (made larger errors) making judgments from
standpoints with higher axial integration and greater axial choice. The
coefficients of the predictors for the connectivity of standpoints and
targets had the same signs but, in that model, only the target’s axial
connectivity was a significant predictor of accuracy: participants pointed
more accurately to targets with higher axial connectivity.

4The analysis code in our OSF repository contains models that include the interaction of these terms as a predictor
as well. That interaction term was not a significant predictor of pointing performance, with the exception of the
VGA models with visual integration and through vision as the measures of interest..
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Moreover, as observed in all three models, the type of trial significantly
predicted participants’ accuracy: participants pointed more accurately on
trials involving buildings from the same route than on trials with buildings
from different routes. This is also reflected in the means presented in Table 2.

Finally, althoughmale participants were numericallymore accurate (M= 36.39°,
SD= 38.52°) than female participants (M= 41.24°, SD= 39.74°), gender did not
significantly predict pointing performance. None of the remaining parameters
significantly predicted pointing error.

2.1.2. Models with predictors from VGA analysis
We followed the same modeling approach, using the visual connectivity and
integration measures obtained from the VGA. The predictors for through
vision were standardized prior to being entered into the model, given their
scale and large range of values (see Tables A1 and A2). The model with the
connectivity predictors obtained from VGA explained 14.64% of the overall
variance, the model with the visual integration predictors from VGA
explained 20.40% of the variance, and the model with through vision pre-
dictors explained 16.32% of the variance.

As shown in Table 3, the results of the models are compatible with those
having the measures from Axial Map Analysis as predictors. The visual
integration and through vision of target landmarks had a significant negative
coefficient whereas the integration of standpoints had a significant positive
coefficient. For the visual connectivity measure derived from VGA, only the
visual connectivity of standpoints significantly predicted pointing perfor-
mance, patterning similarly as the visual integration of standpoints (having
a positive sign). These models suggest that participants were more accurate
(made smaller errors) pointing to targets with higher visual integration,
connectivity, and through vision. They were also less accurate (made larger
errors) making judgments from standpoints with higher visual integration
and through vision.

Table 2. Means and standard deviations for individual ability, pointing performance, and model
building performance across different route distinctions.

M SD

SBSOD-CY 4.46 .95

Pointing Error

Same 28.50 32.90

Different 48.30 41.75

R2 from model building

Route A .54 .27

Route B .57 .31

Entire Model .43 .24

SPATIAL COGNITION & COMPUTATION 17
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Again, in both models, the type of trial was a significant predictor of pointing
accuracy: participants pointed more accurately on trials involving buildings
from the same route than on trials with buildings from different routes.
Gender was, again, not a significant predictor of pointing performance.

2.1.3. Exploratory analysis of the intervisibility of buildings
To explore the possibility that the observed differences between the two trial
types were due to the intervisibility of buildings from the same route, we
created a new predictor by recoding trials in terms of whether the target
building was at least partially visible from the standpoint building. Thus,
trials were recoded as involving buildings from different routes (different
trials, N= 32), which were never intervisible, trials involving buildings from
the same route that were intervisible (same seen trials, N= 17) and trials
involving buildings from the same route that were non-intervisible (same
unseen trials, N= 7). In the obtained dataset, there were 2067 different trials,
1094 “same seen” and 452 “same-unseen” trials, with complete data from the
65 participants.

We then used the same approach to build linear mixed-effects models with
trial type in terms of this intervisibility dimension (i.e., “same-seen” for
intervisible buildings located in same routes, “same-unseen” for non-
intervisible buildings located in same routes, “different” for non-intervisible
buildings located in different routes) as a fixed effect (within-participants),
with the same remaining fixed effects (gender, route order), the Space Syntax
measure for both standpoints and targets as predictors, and random effect
structure as in previous models. We coded the intervisibility factor in terms
of planned contrasts that compared pointing accuracy on same-seen relative
to same-unseen trials (same-seen = −0.5, same-unseen = 0.5), and of same-
seen relative to different trials (same-seen = – 0.5, different = 0.5). Here, we
report the models with Axial Map Analysis measures as predictors, but not
those with VGA measures. The rationale is that visual integration and
connectivity from VGA capture visibility in their operational definitions,
complicating the interpretation of the intervisibility factor. Analysis code
for these models can nevertheless be found in our online repository.

Numerically, participants were the most accurate on same-seen trials
(M= 23.63°, SD= 31.57°), followed by same-unseen trials (M= 40.31°,
SD= 33.09°), and were the least accurate on different trials (M= 48.30°,
SD= 41.75°).

As shown in Table 4, in all models, participants were more accurate when
making judgments on trials involving landmarks from the same route than
from different routes. Moreover, judgments involving intervisible buildings
were not significantly different from those involving non-intervisible
buildings.

SPATIAL COGNITION & COMPUTATION 19
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The Axial Map predictors (the axial connectivity, axial integration, and
axial choice of landmarks) exhibited the same patterns as in the previous
models for predicting pointing accuracy (as in Table 1): participants were
more accurate to point to targets with high axial connectivity, axial integra-
tion, and axial choice, but were less accurate to point from those targets.

2.2. Performance on model-building task

To assess performance on the model-building task, we used bidimensional
regression analysis (Friedman & Kohler, 2003; Tobler, 1994). In these ana-
lyses, a Euclidean transformation is applied to the set of dependent
A-B points (the coordinates of the participant’s placement of the buildings),
such that they are optimally rotated, scaled, and translated to match the fixed
independent X-Y points (the veridical coordinates of the buildings). The
adjusted points are correlated with the correct locations, resulting in
a correlation coefficient. Here, we use the correlation coefficient squared
(R2) as our dependent measure, which captures the proportion of variance
explained in the actual layout of buildings by the participant’s arrangement
of buildings. We computed R2 values for the entire model (eight buildings),
as well as for the two subsets of four buildings from the individual main
routes A and B (see Table 2 for mean R2 values).

We first examined performance for the entire model (all eight buildings)
through an ordinary least squares regression with route order, gender, and
their interaction as predictors. None of these factors significantly predicted
performance on the modeling task (Gender: B = −.005, SE = .068, t= −.081,
p= .94; Route Order: B = −.030, SE = .068, t= −.447, p = .66; Gender x Route
Order: B = −.008, SE = .135, t= .057, p = .96).

We also examined model-building performance on each route (Route
A and Route B), separately. Again, none of these factors significantly
predicted performance. Although we don’t report the results of these
models here, their analysis code can be found on our public repository
for the project.

Next, we considered performance on the model-building task relative to
pointing performance. As shown in Table 5, participants’ mean pointing
error was negatively correlated with model building performance for both
Route A (r= – .39, p< .01) and Route B (r= – .40, p< .001). The smaller
participants’ overall error was on the pointing task, the more accurate the
placement of landmarks for Route A or Route B in the model building
task (higher R2). Notably, the correlation between R2 for the entire model
and overall pointing error was not significant (p= .32). This finding – that
the performance on the pointing task and on model building was corre-
lated when routes were examined separately (but not together) – is
congruent with the findings reported in the previous subsection. As we
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reported, performance in the pointing task was better on trials with
buildings from the same route than from different routes. Together,
these findings suggest that participants had clustered spatial relationships
among landmarks by route.

2.3. Exploratory analyses of individual differences

Finally, we examined individual differences in self-reported spatial ability and
memory performance. Surprisingly, as shown in Table 5, self-reported spatial
ability, as captured by the SBSOD-CY scale, was not correlated with any
aspect of spatial memory performance.

Male participants reported significantly higher spatial ability (M= 4.88,
SD= .85) on the SBSOD-CY than female participants (M= 4.30, SD= .95), t
(63) = 2.30, p = .02. However, despite this difference in self-reported spatial
ability, gender was not a significant predictor of spatial performance in any
of our statistical models reported in the previous subsections.

3. Discussion

In this study, we examined the relationship between spatial memory for
a newly experienced environment and properties of that environment.
After navigating an unfamiliar virtual environment, participants’ perfor-
mance on a pointing and a model-building task was found to be related to
formal environmental properties quantified in terms of measures obtained
from the Space Syntax framework. Participants pointed more accurately to
locations that were highly integrated, connected, and with higher choice, as
computed by Axial Map Analysis. This pattern was also observed for loca-
tions that were high in visual integration and through vision, as computed by
VGA. These findings suggest that properties of environmental space are
associated with the way information is stored or retrieved from spatial
memory.

Perhaps surprisingly, participants were also less accurate to point from
locations with high axial and visual connectivity and integration, high axial
choice, and high through vision. The fact that in most statistical models (for
all measures except visual connectivity), the regression coefficients of Space
Syntax measures for target and standpoint locations had opposite signs is
intriguing and requires some unpacking.

One possible account for the dissociation in pointing performance, when
the environmental properties of target vs. standpoint locations are consid-
ered, is the presence of a fan effect, a well-documented phenomenon from
memory research. According to this account, as the number of memory
traces associated with a concept increases, the longer it takes to retrieve
each one of the traces due to interference from the rest (Anderson, 1974;
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Bunting, Conway & Heitz, 2004). For example, in one experiment by
Anderson (1974) participants first committed to memory 26 sentences of
the form “A person is in the location” (e.g., “A hippie is in the park”, “A
hippie is in the church”, etc.) and then judged whether probe sentences were
part of the 26 presented before. Participants took longer to judge a probe
when a concept (either the person or the location) was involved in 3 rather
than 1 of the studied 26 sentences. Similarly, here, when retrieving spatial
locations from a standpoint, it could be that as that location is increasingly
related to other locations (i.e., the standpoint is a highly integrated and
connected landmark), the more difficult it is to retrieve with accuracy each
of those locations. In contrast, as targets, highly integrated/connected land-
marks are localized with greater precision than less integrated/connected
landmarks due to having more information associated with them (i.e.,
more connections to other landmarks).

This pattern of results contrasts with previous findings that people per-
form more accurately from standpoints of high axial integration than from
standpoints of low integration (Dara-Abrams, 2005). This discrepancy could
be due to a number of methodological differences between our study and that
of Dara-Abrams (2005). For example, in that study, the environment used
was familiar to participants, whereas in our study, the environment was
unfamiliar. Moreover, in Dara-Abrams’s study, the pointing trials always
involved pairs of buildings with high-low integration, whereas in our study
trials involved pairs of buildings with variable integration and connectivity.
Finally, there were differences in how the imagined perspective could be
adopted in the pointing task. The task in Dara-Abrams’s study was arguably
more difficult, as participants were asked to adopt perspectives from memory
by imagining themselves standing in front of buildings in their campus. In
contrast, participants in our study were placed at the actual standpoint in the
virtual environment, having visual access to the immediate surroundings of
the standpoint and being able to rotate their viewpoint. All these methodo-
logical differences could have contributed to the relatively more accurate
performance from highly integrated standpoints in Dara-Abrams (2005).

Altogether, our findings highlight that environmental properties derived
from Space Syntax can predict certain aspects of spatial memory, extending
previous work that has documented that these metrics can predict moment-
by-moment wayfinding decisions and pedestrian flow patterns. For example,
while Emo et al. (2012) showed that Space Syntax measures (and particularly
axial integration) can predict where people choose to go at various street
corners, our findings suggest that they may also influence how spatial
information is stored and retrieved from memory.

Our findings add to the growing literature that assesses the role of
environmental factors in representing spatial information in memory. For
example, according to one popular theory of spatial memory proposed by
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McNamara and colleagues (e.g., Mou, McNamara, Valiquette & Rump,
2004), when people make spatial judgments, they access spatial relations in
memory representations that are stored with a preferred organizing direc-
tion. Although the preferred direction is very often determined by egocentric
experience, it can also be established based on environmental cues, such as
the environment’s geometry (Shelton & McNamara, 2001), the intrinsic
features of the spatial configuration arising from its symmetry (Galati &
Avraamides, 2015; Li, Carlson, Mou, Williams & Miller, 2011; Mou &
McNamara, 2002) and orthogonality (Richard & Waller, 2013), as well as
by functional features of landmarks in the configuration (Taylor & Tversky,
1992). The presence of such salient environmental cues can override ego-
centric experience so that people can in fact maintain spatial information
from orientations that have not been experienced (Shelton & McNamara,
2001; see Galati & Avraamides, 2013 for an extensive discussion). In line with
this work, our findings here demonstrate that environmental properties
influence the accuracy with which information is maintained or retrieved.

Another key finding of our study is that navigators do not readily integrate
information from routes they’ve experienced separately into a single repre-
sentation. Participants, here, pointed more accurately on trials involving
buildings from the same route than from a different route. This finding
persisted in exploratory analyses that also took the inter-visibility of buildings
into account. Participants pointed more accurately on trials that involved
intervisible buildings from the same route (same-seen) than buildings from
a different route. In models that included predictors from Axial Map
Analysis, the difference between intevisible buildings from the same route
(same-seen) than non-intervisible buildings from the same route (same-
unseen) was not significant. We should nevertheless acknowledge that the
intervisibility of buildings, which was coded categorically here, may be partly
confounded with the Axial Map Analysis measures of integration, connectiv-
ity, and choice. Thus, the results of these exploratory analyses should be
interpreted with caution.

Still, additional evidence about the maintenance of distinct representations
for the two routes comes from the model-building task: participants’ pointing
performance on trials with buildings from a given route was correlated with
model-building performance for the subset of buildings from that route.
However, when model-building performance was based on the reconstruc-
tion of all landmark buildings, it was no longer significantly correlated with
overall pointing accuracy.

Together, findings from both tasks support the idea that when people
study routes or spatial layouts with spatial and temporal separation, they
typically maintain them in distinct representations (Meilinger et al., 2011;
Pantelides et al., 2016; Weisberg et al., 2014; Weisberg & Newcombe, 2016;
but see Moar & Carleton, 1982). These findings are also in line with
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hierarchical accounts of spatial memory (Hirtle & Jonides, 1985; see also
Greenauer & Waller, 2010), which propose that locations can be maintained
in separate clusters whose spatial relations are represented at different levels
in a hierarchy. Such accounts support cognitive economy by reducing the
number of spatial relations that need to be stored in memory.

We should note, however, that participants’ expectations about the task,
given our instructions, could have impacted how they organized information
in memory. When participants experienced the two routes and subsequently
the connector routes they were unaware of the specific nature of the upcom-
ing tasks. Although this was done so that we could examine the spontaneous
integration of spatial information across routes, our under-specified instruc-
tions might have primed participants more toward maintaining separate
route representations than an integrated survey representation. Thus, it is
still possible that, under different learning conditions that promote the
formation of survey representation, spontaneous integration might take
place.

Notably, performance in the pointing and the model building task was not
predicted by scores on the SBSOD-CY scale. The lack of a correlation
between memory performance and sense of direction was somewhat unex-
pected given prior findings with the original version of the scale based on
a U.S. sample (Hegarty et al., 2002; Weisberg et al., 2014). However, it does
replicate findings from a previous study of ours that involved Cypriot
participants navigating a virtual environment (Galati et al., 2018). It is
unclear why no correlation between SBSOD-CY and spatial memory was
observed here or in Galati et al. (2018). One possibility is that the lack of
correlation is due to the cultural characteristics of the Cypriot sample.
Navigating the smaller and simpler, and as a result, highly familiar urban
environments in Cyprus may not pose a heavy burden on people in terms of
orientation and wayfinding in everyday life. As SBSOD assesses the output of
spatial activity (i.e., difficulties in navigation and orientation), perhaps it
cannot adequately capture variability in their underlying spatial skills. We
should note that the mode of navigation in our study may have also played
a role, since SBSOD has been shown to better capture real-life navigation
than navigation of projected virtual environments (Hegarty et al., 2002.
Study, p. 5).

Overall, the focus of our study was to examine the relationship between
environmental characteristics of locations in an unfamiliar environment and
spatial memory performance, following navigation. Since we used an existing
virtual environment, we could not experimentally manipulate environmental
properties, and by extension the Space Syntax metrics of landmark locations.
Moreover, since the virtual environment was a small system that didn’t
include many buildings with extremely high and low values, it didn’t lend
itself to comparisons of specific types of trials (e.g., high-high, high-low, low-
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high, low-low Space Syntax values for standpoints and targets in pointing
trials). The lack of experimental control over the environment’s properties
raises the possibility of alternative explanations (e.g., that buildings of high
integration are concentrated at central parts of the environment). Although
we don’t see any obvious alternative explanations for the results here (e.g.,
here, buildings of high integration were not located centrally), some caution
is nevertheless warranted when interpreting the results.

Despite this limitation, our findings highlight the importance of environ-
mental factors on spatial memory by demonstrating that properties of envir-
onmental space, as captured by Space Syntax metrics, relate to performance
on spatial judgments from memory. In our study, participants pointed more
accurately to highly integrated and connected locations but at the same time
pointed less accurately from locations with high connectivity and integration
to other locations. Although this is intriguing finding calls for further
research, it provides clear evidence for the role of environmental cues in
the organization and access of spatial information in memory. Performance
in both the pointing and model-building tasks of our study also supports the
hierarchical organization of spatial memory: navigators were more efficient
to reason about locations experienced within the same route than across
routes, which suggests that they had maintained distinct representations for
the two routes. Together, our findings underscore that experience with
a spatial environment interacts with environmental properties to determine
how spatial information is encoded and maintained in memory.
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Appendix

Figure A1. Visualization of the whole stand-alone system analyzed by Space Syntax. Source:
Virtual SILCton OSF repository, https://osf.io/w7pmh.

Table A1. Descriptive statistics of the entire campus for connectivity, integration and choice
values from the Axial Map Analysis and for visual connectivity, visual integration, and through
vision from Visibility Graph Analysis (VGA).

Attribute Minimum Maximum Average

Axial Map Analysis

Connectivity 2 9 3.54

Integration 0.77 1.82 1.20

Choice 0 296 81

VGA Analysis

Visual connectivity 18 367 126.18

Visual Integration 1.89 2.58 3.70

Through vision 0 1747.33 11228
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Table A2. Space Syntax values for each landmark in the campus from the Axial Map Analysis and
Visibility Graph Analysis.

Axial Map Analysis Visibility Graph Analysis

Landmark per
node Connectivity

Integration
[HH] Choice

Visual
connectivity

Visual
integration

Through
vision

Route A

Batty House 2 0.95 12 101.13 2.09 1334.65

Lynch Station 2 0.95 12 106 2.19 778.92

Harris Hall 3 1.31 95 100.82 2.54 1001.24

Harvey House 4 1.24 141 68.90 2.42 287.39

Route B

Sauer Center 6 1.55 59 64.48 2.45 286.22

Golledge Hall 7 1.79 234 108.53 2.91 4539.11

Tobler
Museum

3 1.25 3 80.02 2.72 522.33

Snow Church 6 1.47 132 94.59 2.61 658.61
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