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by Paolo VIVIANI

As deep learning techniques become more and more popular, there is the
need to move these applications from the data scientist’s Jupyter notebook
to efficient and reliable enterprise solutions. Moreover, distributed train-
ing of deep learning models will happen more and more outside the well-
known borders of cloud and HPC infrastructure and will move to edge and
mobile platforms. Current techniques for distributed deep learning have
drawbacks in both these scenarios, limiting their long-term applicability.

After a critical review of the established techniques for Data Parallel
training from both a distributed computing and deep learning perspective,
anovel approach based on nearest-neighbour communications is presented
in order to overcome some of the issues related to mainstream approaches,
such as global communication patterns. Moreover, in order to validate
the proposed strategy, the Flexible Asynchronous Scalable Training (FAST)
framework is introduced, which allows to apply the nearest-neighbours
communications approach to a deep learning framework of choice.

Finally, a relevant use-case is deployed on a medium-scale infrastruc-
ture to demonstrate both the framework and the methodology presented.
Training convergence and scalability results are presented and discussed in
comparison to a baseline defined by using state-of-the-art distributed train-
ing tools provided by a well-known deep learning framework.
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Chapter 1

Introduction

Deep Learning has largely dominated the machine learning debate during
the last few years: in fact it promises, and most of the time delivers, aston-
ishing results for a large number of tasks that are considered challenging by
computer scientists, leading to a significant exposure of these results even
outside the academic world. This exposure, coupled with the significant
effort spent by large companies to push forward both industrial and aca-
demic research on deep learning and Artificial Intelligence (Al), may trick
the casual practitioner into the ill-founded belief that this methodology is
well understood, established, and somehow almighty. Diving deeper into
these topics, however, unveils a reality where researchers are able to accom-
plish tremendous tasks by means of Deep Neural Networks (DNNs), but
the efficiency of this approach still involves some degree of trial-and-error
tuning of the optimisation hyper-parameters. Despite many remarkable ef-
forts, several aspects of this matter are still unclear on many different levels:
from the definition of the right network architecture for a given problem, to
the dynamic of the optimisation involved in the training. Given the point
of view of the parallel computing researcher, this translates to a buzzword-
driven approach to performance evaluation, and to an unsatisfactory un-
derstanding of the theoretical framework where all the strategies to train
neural networks in parallel belong to.

This work, far from intending to fill all the gaps in the theory of deep
learning, aims to shed some light upon a few theoretical and practical as-
pects of the parallel training of DNNs, with the hope to give more sturdy
foundations to the deployment of the new breed of Al workloads that is tak-
ing over High Performance Computing (HPC) machines all over the world.

1.1 Main contributions

The task of choosing an interesting research problem in the field of parallel
deep learning can be daunting, given the number of open questions faced
by researchers every day. This work approaches the field from the most ele-
mentary concepts, and tries to put some order by identifying those aspects
that are orthogonal to each other, and hence can be tackled independently,
while proceeding step by step to narrow the focus towards a specific prob-
lem.

The problem at the core of this work lies in the theoretical and practical
limitations of current data parallel approaches to the training of deep neu-
ral networks. While the details of this matter will be explored later on, its
relevance cannot be understated given how fast these techniques are grow-
ing in popularity. In fact, there is the need to move these applications from
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the data scientist’s Jupyter notebook to reliable and efficient enterprise so-
lutions, without falling into the temptation to accept bombastic statements
from large commercial players proposing their own “silver bullet” to ad-
dress challenging Al workloads. In this context, this work tries to lay down
the path to achieve faster time-to-result, decoupling the problem of parallel
training from the specific learning task, software framework, and hardware
architecture.

Review of theoretical framework

Much work has been done to enable training of DNNs on parallel archi-
tectures, yet most of the previous research was made from the perspective
of domain experts, as an attempt to improve the performance of a specific
use-case, without the intention to provide a general approach. This led to a
limited amount of theoretical research in this field, and even less attempts
to summarise the literature. The first, and to date the only, comprehensive
review of this topic dates back to February 2018 [1]. This thesis intends to
go beyond the enumeration of different strategies and it will try to criti-
cally understand their strengths and weaknesses and, above all, will try to
identify the classification criteria that can actually provide useful insight to
forecast and improve real-life performance of parallel training.

Chapter 2 will review the theory of deep learning, it will discuss the
mathematics behind key aspects that have an impact on the training perfor-
mance, and it will provide a first theoretical contribution in the discussion
about mini-batch size choice for training. Finally, it will briefly review the
main software tools for deep learning.

Chapter 3 will review the techniques of concurrent training from a more
practical point of view and it will delve into the detail of data parallel train-
ing, which sits at the core of this work, discussing the usual classification
based on the model consistency spectrum and reviewing the major results
in the field. It will explore the approaches summarised in figure 1.1 to iden-
tify their suitability to be pushed beyond the current state of the art. It will
finally present the implementations provided by major software tools to
perform training in a distributed environment.

Nearest neighbours communication training

This topic, originally presented in previous works [2, 3], represents the
main methodological contribution of this dissertation. Chapter 4 will build
on the results of the previous chapter, further discussing the theoretical lim-
itations of mainstream approaches to parallel training, and defining some
common features that can be used to identify a potential direction for im-
provement. Given this background, the author attempts to envision a strat-
egy to train DNNs that is, at least in principle, not affected by such flaws.
To achieve this, the focus is posed on a specific branch of figure 1.1: dis-
tributed data parallellism. This focus does not negatively affect the gener-
ality and the value of the present work, since most of the listed techniques
are not mutually exclusive, hence they can be applied together given suffi-
cient computational resources. Finally, Nearest neighbours communication
training is introduced: it requires the training workers in a distributed set-
up, to communicate gradient updates only to their nearest neighbours in a
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FIGURE 1.1: Brief summary of the available techniques to

improve the performance of deep learning. These tech-

niques have been reviewed in this work, and results are pre-
sented in chapter 3.

fully asynchronous manner. This is expected to be beneficial for both scala-
bility and training accuracy.

Flexible Asynchronous Scalable Training (FAST) framework

One of the observations that will be presented in chapters 2 and 4 is the fact
that theoretical results regarding the convergence of distributed learning
algorithms are hardly applicable to forecast the performance of a given real
use case. Unfortunately, this work could not make an exception to this rule,
hence an experimental validation of the proposed approach is a paramount.

Chapter 5 presents a novel framework designed to allow the user to
train deep neural networks in a distributed fashion with limited impact on
the user’s training code, which can be based on a deep learning framework
of choice. The FAST framework is designed to encapsulate the user code
written with any Deep Learning (DL) framework for which an interface is
provided, capturing gradients at each iteration and exchanging them with
neighbour workers; the connectivity overlay that defines the neighbouring
relationships can be easily expressed in terms of channels open between
workers, and communications are handled in a fully asynchronous, non-
blocking manner. This framework allowed the author to eventually test the
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methodology introduced above and to compare the results on real prob-
lems. Chapter 6 will present the results achieved on a representative dataset
and deep learning model from literature, comparing several performance
metrics with both the single-node training and the mainstream approach to
distributed training.

It is worth noting that this dissertation is the result of a research effort
started approximately in January 2018: given the interest surrounding this
topic, a large number of publications and software tools were made avail-
able during this period, with some of them partially overlapping with the
scope of this work. In particular it is worth to mention the following works,
both published in March 2018, from Ben-Nun and Hoefler [1] and from
Daily et al. [4]: the former presents a comprehensive review of the state
of the art in parallel deep learning, which definitely intersects the scope
of this dissertation, and therefore it is frequently mentioned here. The lat-
ter proposes a very similar approach, based on some common theoretical
grounds: nevertheless, still, it is the opinion of the author that the present
work retains its relevance regardless the amount of related literature and
competing approaches published during the last year. Related works are
in general reported and discussed to the best of the author’s knowledge,
however, the extremely fast publication cycle in this field, mainly based on
pre-prints repositories like arXiv, could partially jeopardize this attempt.

1.2 Collateral results

As the bottom line of an industrial PhD program, this thesis should reflect
to some degree the whole path traversed by the author to achieve its main
scientific contribution. While the rest of this dissertation will present in
detail this contribution, it is worth to dedicate a paragraph to resume all
the relevant activities, publications, and results achieved during the PhD
course, with specific focus on all the, mostly industrial, aspects that are not
directly related to the principal contribution.

The author performed the most part of his research activity within the
Research and Innovation department of Noesis Solutions!, a simulation
innovation partner to manufacturers in automotive, aerospace and other
engineering-intense industries. Specialized in simulation process integra-
tion and numerical design optimisation (PIDO), its software provides inter-
faces for a large number of commercial and open source simulation tools,
allowing the customer to automate and integrate it simulation workflow,
while capturing knowledge with machine learning techniques that anal-
yse data coming from the workflow itself. Noesis actively participates in
many national and European R&D projects targeting the development of
new technologies, in which the author has been involved.

1.2.1 Funded projects

The author activity has been related mainly to four funded research projects,
in which he covered the role of main technical point of contact for Noe-
sis Solutions, with responsibilities spanning from the development of the

'Noesis Solutions NV, Leuven, Belgium (www.noesissolutions.com).
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core methodologies required by the project to the presentation of results at
project reviews and the writing of deliverables.

MACH ITEA2 project 12002; MAssive Calculations on Hybrid systems
[5]. The goal of the project is to develop a Domain-Specific Embedded Lan-
guage (DSeL) and a computation framework that allows to access hybrid
hardware acceleration without specific expertise. The project involved 15
partners from 4 countries, with a funding of 12.5M€.

Fortissimo 2 Horizon 2020-FoF-2015; Fortissimo2 [6] is a collaborative
project that will enable European SMEs to be more competitive globally
through the use of simulation services running on a High Performance
Computing cloud infrastructure. The project involved 38 partners, with
a funding from European Commission (EC) of 10M€.

CloudFlow Cloudflow project [7] is aimed to enable the remote use of
computational services distributed on the cloud, seamlessly integrating these
within established engineering design workflows and standards [7]. The
project involved 44 partners, with a funding from EC of 6.6M<€.

BoSS Blockchain for Online Service Security [8]. The project involved 8
partners from Belgium and funding from the Flemish government. The
following publication resulted from the collaboration

e V. Reniers, P. Viviani, R. Lombardi, D. V. Landuyt, B. Lagaisse, and W.
Joosen, “Analysis of architectural variants for auditable blockchain-
based private data sharing”, in In proc. of the 34th ACM Symposium on
Applied Computing (SAC), Limassol, Cyprus, Apr. 2019, pp. 1-8

1.2.2 Industrial research

The main topic investigated by the author is the application of machine
learning techniques in the design engineering context, and the deployment
of these applications on high-performance architectures, such as heteroge-
neous hardware with multi-core CPUs and GPUs. The first part of this work
has been directed towards the design and implementation of a C++ linear
algebra runtime system that gives the developer the capability to perform
matrix factorisations either on the CPU or on the GPU, choosing the ap-
propriate architecture at runtime, instead of having to recompile the code.
This work started as the main research topic of the MACH project (cf. Sec.
1.2.1) and later was brought into the product by Noesis Solutions, that used
the capabilities provided by this framework, to significantly improve the
performance of a number of numerical algorithms used to interpolate dis-
crete data. The following publications are the direct result of the author’s
research on this topic:

e P. Viviani, M. Aldinucci, R. d’Ippolito, J. Lemeire, and D. Vucinic,
“A flexible numerical framework for engineering—a response surface
modelling application”, in Improved Performance of Materials: Design
and Experimental Approaches. Cham: Springer International Publish-
ing, 2018, pp. 93-106
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e P. Viviani, M. Torquati, M. Aldinucci, and R. d'Ippolito, “Multiple
back-end support for the armadillo linear algebra interface”, in In
proc. of the 32nd ACM Symposium on Applied Computing (SAC), Mar-
rakesh, Morocco, Apr. 2017, pp. 1566-1573

e P Viviani, M. Aldinucci, and R. d’Ippolito, “An hybrid linear alge-
bra framework for engineering”, in Advanced Computer Architecture
and Compilation for High-Performance and Embedded Systems (ACACES)
— Poster Abstracts, Fiuggi, Italy, Jul. 2016

e P. Viviani, M. Aldinucci, R. d’Ippolito, J. Lemeire, and D. Vucinic,
“A flexible numerical framework for engineering - a response surface
modelling application”, in 10th Intl. Conference on Advanced Computa-
tional Engineering and Experimenting (ACE-X), 2016

The performance improvement just described, made feasible a number
of techniques that would have been otherwise too computationally expen-
sive: as a first result, different strategies have been developed aimed to
apply ensemble methods to regression and interpolation models in order
to achieve better generalisation accuracy and robustness across different
use-case scenarios with respect to the individual models themselves. One
of these strategies, based on cross validation, produced very interesting re-
sults: its prediction of the “best model” among a pool of available mod-
els on a given dataset agrees with ground truth validation a surprisingly
high fraction of times. Another version, also based on cross validation
data, blends individual models locally across different regions of the do-
main and provides very robust modelling capabilities to engineers and do-
main experts. Both these strategies are already included in Noesis’ flagship
product.

While ensemble methods has been investigated to extract as much in-
formation as possible from very sparse datasets, the other end of the spec-
trum has been discussed too: the state of practice for discrete engineering
data interpolation is given by O(1n%) non-parametric regression algorithms,
which are not suitable to handle large datasets. On the other hand, cheaper
approaches like least squares do not provide the necessary accuracy. In
this context, DNNs have been investigated to handle large-scale regression
problems in the engineering domain, providing both a methodology and an
implementation to let the user exploit DNNs without specific deep learn-
ing expertise (i.e. a simple speed/accuracy trade-off slider is provided).
The implementation is currently integrated into Noesis software Optimus.
State-of-the-art frameworks have been investigated and leveraged to both
provide optimal performance on CPU and GPU and to allow C++-based
training to protect the code Intellectual Property.

Details of the work on ensemble methods and deep learning regression
are confidential and thus not published. On the other hand, the industrial
applications of deep learning sparked the interest in the problems related
to performance and scalability of such methodologies at large scale. While
the approach currently included in Noesis” products does not present par-
ticular performance challenges, upcoming research efforts will definitely
require large scale training of DNNs in order to leverage the large amount
of data acquired by geographically distributed edge devices and sensors
that will soon permeate industrial shop floors.
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1.2.3 Other publications

The following publications are either directly related to the main topic of
this dissertation, or the outcome of the collaboration of different members
of the Author’s research group”.

e P. Viviani, M. Drocco, D. Baccega, I. Colonnelli, and M. Aldinucci,
“Deep learning at scale”, in Proc. of 27th Euromicro Intl. Conference
on Parallel Distributed and network-based Processing (PDP), Pavia, Italy:
IEEE, 2019

e P. Viviani, M. Drocco, I. Colonnelli, M. Aldinucci, and M. Grangetto,
“Accelerating spectral graph analysis through wavefronts of linear al-
gebra operations”, in Proc. of 27th Euromicro Intl. Conference on Parallel
Distributed and network-based Processing (PDP), Pavia, Italy: IEEE, 2019

e M. Aldinucci, S. Rabellino, M. Pironti, F. Spiga, P. Viviani, M. Drocco,
M. Guerzoni, G. Boella, M. Mellia, P. Margara, 1. Drago, R. Martu-
rano, G. Marchetto, E. Piccolo, S. Bagnasco, S. Lusso, S. Vallero, G.
Attardi, A. Barchiesi, A. Colla, and F. Galeazzi, “Hpc4ai, an ai-on-
demand federated platform endeavour”, in ACM Computing Frontiers,
Ischia, Italy, May 2018

e P. Viviani, M. Drocco, and M. Aldinucci, “Pushing the boundaries of
parallel deep learning - A practical approach”, CoRR, vol. abs/1806.09528,
2018

e P. Viviani, M. Drocco, and M. Aldinucci, “Scaling dense linear algebra
on multicore and beyond: A survey”, in Proc. of 26th Euromicro Intl.
Conference on Parallel Distributed and network-based Processing (PDP),
Cambridge, United Kingdom: IEEE, 2018

e F. Tordini, M. Aldinucci, P. Viviani, I. Merelli, and P. Lio, “Scientific
workflows on clouds with heterogeneous and preemptible instances”,
in Proc. of the Intl. Conference on Parallel Computing, ParCo 2017, 12-15
September 2017, Bologna, Italy, ser. Advances in Parallel Computing,
IOS Press, 2018

A further publication reporting the results presented in this disserta-
tion has been submitted for review to the special issue of Future Generation
Computer Systems titled “On The Road to Exascale II: Advances in High Per-
formance Computing and Simulations”.

1.2.4 Funding

This work has been partially supported by the ITEA2 project 12002 MACH,
the EU FP7 REPARA project (no. 609666), by the HPC4AI project funded
by the Region Piedmont POR-FESR 2014-20 programme (INFRA-P) [9], and
by the OptiBike experiment in the H2020 project Fortissimo2 (no. 680481).
Experimentation has been possible thanks to the Competency Center on Scien-
tific Computing (C3S) at University of Turin [10], to Compagnia di SanPaolo
for the donation of the OCCAM heterogeneous cluster, and to resources

*Parallel computing group, Computer science Department, University of Turin (a1pha.
di.unito.it)
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provided by the Pawsey Supercomputing Centre with funding from the
Australian Government and the Government of Western Australia.



Chapter 2

Background

2.1 Deep Learning

Deep Learning [11] is Machine Learning (ML) technique that focuses on
learning data representations in order to avoid the expensive feature engi-
neering phase usually required by conventional ML algorithms. This al-
lows the model to be fed with raw data and to automatically discover the
features needed for detection or classification. DL models are composed
of multiple processing layers to learn representations of data with multiple
levels of abstraction. These methods [12] have significantly improved the
state-of-the-art in image classification and object detection [13-15], speech
recognition [16, 17], machine language translation [18, 19] and many other
domains such as drug discovery and genomics [20, 21].

2.1.1 Supervised Learning and Backpropagation

In order to understand the mechanics that regulates Deep Learning, it is
useful to introduce the most trivial declination of ML: supervised learning
[22]. Supervised learning involves the collection of a large set of labelled
data (i.e. a set of input data, each one with one or more ground truth /a-
bels already associated, possibly by a human) which is then shown to a
model that in turn produces a set of predictions associated to each input.
The predictions and the labels are then compared, and the model is iter-
atively corrected in order to provide predictions as similar as possible to
the labels. Figure 2.1 represents the general setting of supervised learn-
ing. This is a very high-level description of a process that involves several
subtleties, starting from the definition of input themselves, up to the met-
ric that is used to define the distance between predictions and labels in the
output space. Moreover, it is important to understand that this optimisation

Correction to the model

—> >
Inputs Predictions Comparison Ground

Model truth
(labels)

Y
A

FIGURE 2.1: Typical workflow of supervised learning.
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process is bound to minimise the error made by the model fed with train-
ing data, hence the distance between predicted labels and ground truth,
however there is no guarantee that the same model will predict previously
unseen data as well as its fitness with respect to the training data would
suggest. This is the typical instance of the approximation-generalisation
trade-off [23, p. 62] that is pivotal in machine learning, sometimes this issue
can be referred to as the gap between in-sample error and out-of-sample error
(i.e. error calculated w.rt. training data vs. error calculated w.r.t. previ-
ously unseen data).

Hidden Units
(neurons)

Inputs Outputs

=2 xwy 8 =f)

(A) Feedforward Artificial Neural Network. The calculation of neuron activations is shown
below the network.

Compare
output with
true label

oL _ | (pred) _ _(true)
oy, i Vi
oL _ oL oL _ OL M
ds; L Wik 9y oz

(B) Backpropagation process. Below the network is outlined the derivation of weight gradi-
ents from the comparison of predictions and labels. E represents the network’s loss function.

FIGURE 2.2: Depiction of a feedforward, backpropagation

multi-layer neural network [11]. The x; represent input val-

ues, w;; are the weights associated to the edges of the net-

work, and y; are the output values. z represents the neuron

activations, which are fed to the activation function f to ob-

tain the output of the neuron s. Different subscript indices
are used for different layers.

Classical machine learning uses algorithms like linear regression, logis-
tic regression and support vector machines [23] to learn correlations in a
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given dataset, on the other end Deep Learning relies on multi-layer Ar-
tificial Neural Networks (ANNs). An artificial neural network is a col-
lection of Rosenblatt’s Neurons (Perceptrons) [24], which can be seen as
a loose model of biological neurons, arranged in layers and connected by
“synapses” (edges). These neurons usually implement some kind of non-
linear activation function that transforms the signal (typically real numbers)
received from input edges into different values to be further transformed
downstream. The non-linearity of the activation function guarantees that it
makes sense to stack multiple neurons in a sequence, as otherwise it would
be possible to squash any sequence into a linear model. Figure 2.2a repre-
sents the transformation of input values into output values when flowing
through a simple neural network made of two layers (feedforward). Usual
implementations of neural networks associate a weight to each edge of the
network; these weights are the parameters that are adjusted in a supervised
training process in order to let the model fit the training data.

Multi-layer neural networks are in fact a chain of function compositions:
hence it is possible to express the derivative of the error, defined as the
distance between labels and predictions (loss), with respect to individual
weights. This makes possible to express a gradient of the loss function in
the space of weights, which can be followed in order to train (namely, op-
timise) the weights themselves to minimize the loss function. The process
of calculating gradients starting from the value of the loss function is called
backpropagation (Fig. 2.2b) [25-28].

Understanding the shape of the loss function and the path followed
by the gradient-based optimisation are key points in successful training of
DNNs and, even more, in distributed training. For long time it has been
widely considered infeasible to train deep architectures effectively without
the gradient vanishing [29] or the optimisation being trapped in some poor
local minima. The former issue has been solved by a careful selection of
the activation function [30] and the advent of faster hardware for training
(cf. sec. 3). The latter instead appeared to not being an issue at all for large
networks, as most of the time the system reaches solutions of very simi-
lar quality regardless of the initial condition, instead, saddle points where
gradient is zero and the second derivative has opposite sign in different
dimensions are quite common in the loss landscape [31].

Neural networks, as all machine learning models, present a set of pa-
rameters that are related to the structure of the model and to the training
process, and they are not parameters of the model in the statistical sense.
The number and the topology of layers, the depth of the network, as well as
the parameters of the optimisation algorithm used for the training, are all
identified as hyper-parameters of the model. Needless to say that they play a
critical role in successful training of ml models.

2.1.2 Gradient Descent Training

The previous paragraph introduced the the concept of optimising model
parameters by means of gradients computed with backpropagation. While
gradient descent is a trivial optimisation algorithm, the peculiarities of deep
neural networks make the task daunting: the number of weights for a state-
of-the-art model can be as high as several tens of millions [1], that means
a non-linear optimisation problem in a domain of the same dimensionality.
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On the other hand, some surprisingly trivial optimisation methods turned
out to be very effective to achieve good training and generalisation results.
At this point some notation is useful before elaborating further on this topic.

For the rest of this dissertation, if not explicitly stated, the following
conventions will be used: the input dataset is defined as

X:{Xl,...,XN}

where each x; € X is a vector in the input space, that can be as simple as R",
or the array of gray levels for a the pixels composing an image. In the same
way the labels can be described as

Y={y1,---,yn}

where y; € Y are also vectors in the space of labels (i.e. for simple multi-
class classification, a they can be unit vectors with ones in the position of
the class represented by the label, and zeros in all the other positions). Each
pair of correlated input-outputs (x;,y;) is a sample in the dataset (X, Y) and
is used to train a neural network represented by a collection of weights
(typically real-valued, but they can be discrete for some applications [32,
33])
w={wi,..., Wy}

Possibly, a bias term b; is also present on each edge of the network, so that
the equation for z; of figure 2.2a becomes

zj = Z Xjwij + b] (2.1)
i

however, this term will be understood hereafter for simplicity of the nota-
tion. At this stage it is not yet relevant to explicit the network topology, as
the following notation applies for any well known architecture. The loss
function is defined as
L=L <y§p ”d), Yi) , ygp red) — Feedforward(w, x;)

where the argument y; can be understood in favour of the following nota-
tion

L=L(w,x). (2.2)
The loss is typically defined as L : R™ — R and its form is chosen depend-
ing on the specific task, such as Mean Squared Error (MSE) for regression

or cross-entropy for classification [34]. The backpropagation allows to com-
pute the gradient of the loss function with respect to the weights:

oL (w, x]-) oL (w, x]-) >

VL(w,x;) = e
(W) ( Ow, T Owy,
this represents the direction of steepest slope of the loss surface calculated
with respect to x;j in the parameter’s space.

It important to note that the loss is function of the weights and of the
specific sample, but the objective of learning is usually to minimise the loss
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over all the dataset, hence the target function of the optimisation is

N
Z (W, x;)
i=0
and the gradient is given by

N
VL(w,X) =5 lz;w W, X;) (2.3)

this means that, in order to compute the full gradient, it is necessary to
execute the feedforward on all the samples in the dataset. The gradient
descent optimisation step can be expressed as

w(t+1) = w(t) —nVL(w(t), X) (2.4)

where 7 represents the learning rate, namely the length of the step taken
in the direction of steepest descent along the loss surface. Unfortunately,
using the full gradient as in equation (2.3) requires a significant amount of
computation, while usually resulting in poor generalisation results [35].

A significant breakthrough in deep learning has been represented by the
application of Stochastic Gradient Descent (SGD) [36] to the training pro-
cess, allowing faster convergence with less computational effort [28]. This
process is also known as on-line gradient descent, as opposed to to the batch
gradient descent described by equation (2.4) and involves the approxima-
tion of the full gradient by computing it on a single sample x € X. Under the
assumption that x are sampled as Independent and identically distributed
random variables (i.i.d.) from X with probability density p(x), it is in fact
possible to state that

L(w, X) = Exex [L(W,x)] = /p(x)L(w x) dx

where E,(f(x)) is the expected value of function f for a randomly sampled
variable x. From this equation it can be proven that the gradient computed
on a single sample is a good approximation for the full gradient: in fact, for
each component of the gradient it is possible to write

OL(w /
aw, = 3w, | P

YL
:/p<x> g, ’d—ExeX[aL;Z;")]

and hence for all the components
VL(w, X) = Exex [VL(W,x)]. 25)

Replacing the dataset X with the whole input domain and defining E as
the generalisation (out-of-sample) error and D the input domain such that
X C D, the same proof holds and allows to write the following equation

E(W, D) = EXED [L(Wv X)]
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Gradients
w < w —nVL(w,x;)

Input DNN Output Loss Labels

X; w yf’md) L(w,x;) Vi

FIGURE 2.3: Representation of supervised deep learning
with stochastic gradient descent.

VE(w,D) = Exep [VL(w, x)] (2.6)

then is possible to conclude that the stochastic gradient is an unbiased estima-
tor of the generalisation error gradient. Unfortunately, this is only partially
true, as usually loss and generalisation error are correlated, but overfitting
is always around the corner [23].

For on-line optimisation, subsequent steps based on individual compo-
nents of the gradient are computed as following

w(t+ 1) = w(t) — gV (w(t), x)
w(t+2) = Wt +1) = nV(W(t+ 1), x11)

w(t+k+1)=w(t+k) —nV(W(t+k),Xiir) (2.7)

where one step is taken for each sample extracted from the dataset. This
approach proved to be extremely effective and, despite several attempts
to develop different optimisation strategies [12], either second-order meth-
ods or not gradient-based, it is still the base of most of the state-of-the-art
deep learning applications [35, 37-39]. A common approach for the op-
timisation is to go through all the samples without replacement multiple
times before reaching a satisfactory result, in this case each run through
the whole dataset is referred to as an epoch. Figure 2.3 reformulates the
same concept introduced in figure 2.1, detailing the mathematical formula-
tion involved in the backpropagation-SGD loop for training of neural net-
works. Both figure 2.3 and equation (2.7) show how the gradient value
depend on the present w(t) configuration and how its application through
back-propagation produces a new configuration w(t 4 1): the new weights
represent a data dependency for the feed-forward step for sample x;;1,
that must come strictly after the back-propagation, otherwise the gradient
would be calculated based on outdated (stale) weights. This makes on-line
gradient descent intrinsically sequential, affecting the capability to exploit
parallelism for training.

Mini-batch gradient descent

While the stochasting gradient descent is very effective for such a trivial
strategy, its optimisation path is usually quite noisy. It is possible to miti-
gate this noisy behaviour by combining the advantages of both stochastic
and batch gradient descent. Mini-batch gradient descent [40, 41] computes
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the loss based on a subset X(; ;) = {X;,...,Xi1y,—1} of size n, (the mini-
batch) of the training data as following

1 i+nb—1
- VL(W, %)) < 6L(W, X(iin,-1))
j=i
w(t+1) = w(t) = noL(w(t), Xiisn,-1)) (2.8)

where the gradient has been averaged by dividing the sum by 1;. Note that
mini-batch averaging, as opposite of just summing, has a non-trivial impact
on the convergence of the training [37].

Apart from the convergence properties, the main advantage of this ap-
proach is the fact that the feedforward/backpropagation steps for all the
samples in the mini-batch can be executed in parallel. In particular equa-
tion (2.1) and its backpropagatin couterpart can be more effectively ex-
pressed as matrix multiplications and element-wise operations[28], and com-
puted efficiently by means of multi-threaded General Matrix Multiplica-
tions (GEMMs) and optimised data structures on suitable architectures [42—
44]. From this point of view it appears how mini-batch gradient descent is
the simplest form of parallel training for deep neural networks. The conver-
gence of the training given the mini-batch size and the relationship between
mini-batch optimisation and other techniques of parallel and distributed
training will be a pivotal point in this dissertation.

It is interesting to remark that mini-batch gradient descent is the most
general case of gradient descent training, as both SGD and batch gradient
descent are special cases with mini-batch size n, = 1 and n, = N respec-
tively. Hereafter the distinction between stochastic, mini-batch and batch
gradient descent will be dropped for brevity, referring in general to SGD
and specifying the mini-batch size n, where relevant.

Equation (2.8) represents the simplest form of SGD. Several refinements
have been developed to improve the convergence rate of DNNs training, a
good review of them can be found in literature [34, 45]. The key points of
these evolved algorithms are:

1. variable learning rate, n — n(t);
2. accounting for previous gradient steps (e.g. momentum [46]);

3. defining a different learning rate for each weight n(t) — n(t, wy) (e.g.
ADAM [47]).

Momentum SGD is worth to be quickly reviewed, as it is a commonly
adopted modification to the plain SGD. It is defined recursively as

w(t+1)=w(t) — v

where .
o = o1 +nOL(w(t), X)

This formulation leads to the accumulation of previous SGD steps to, loosely
speaking, build up some kind of inertia in the optimisation process, which
turns out to be beneficial for the convergence. The typical pictorial repre-
sentation of the effect of momentum is shown in figure 2.4.
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-

(A) Without momentum. (B) With momentum.

FIGURE 2.4: Pictorial representation of the effect of momen-
tum to a convex optimization baed on previous literature
[45].

Mini-batch size

Defining the right mini-batch size for training is by itself a complex opti-
misation task: several aspects must be considered, the most relevant one
is the generalisation vs. utilisation trade-off [1]. This kind of tradeoff is also
pivotal for this work, and regards the capacity of a model to achieve good
out-of-sample performance even when trained with larger and larger batch
sizes in order to exploit parallelism.

The typical batch size used for training is 1 < n, < N, with n, = 32 as
a “magic number” that is usually suggested to achieve good convergence
[37]; in general the consensus in the deep learning community is that the
mini-batches should neither be too large nor too small, behaviour depicted
by figure 2.5. This idea comes either from experience and from some theo-
retical investigations, the first contribution of this work, carried out in this
paragraph, is to review some theoretical points and to discuss their real-life
impact to the training process.

Generalisation Error

Mini-batch size

FIGURE 2.5: Illustration of common consensus about gen-
eralisation performance vs. mini-batch size. [1]

An important work that advocates the use of small batches, to the limit
of on-line training, has been published by Wilson and Martinez [35]. The
first observation about this work is that, despite showing how 1, = 1 has
the best convergence rate in terms of number of epochs needed to reach a
given accuracy, it does not take into account the time taken to reach that
accuracy. In fact, with modern many-core architectures almost perfect scala-
bility is within reach up to the saturation of the architecture (e.g. one or two
hundred samples, to give an order of magnitude for a typical case). This
means that, given N, epochs necessary to reach a given accuracy for the
on-line version, the mini-batch version is convenient up to Ny = 11 - Nieg
epochs, assuming perfect mini-batch scalability. Other works advocate the
optimality of on-line training in terms of convergence rate [48], however,
the performance penalty of a fully sequential computation is so high that
pure SGD is rarely used in practice.
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The case against large mini-batches is more nuanced: while some more
works definitely show an advantage of smaller 7, [49], others present ef-
fective training even with batches of several thousands of samples [50-54].
The theoretical existence of an upper bound to the batch size (the red region
in figure 2.5) is stated by Ben-Nun and Hoefler [1], who state that previous
works exploiting very large batches are only pushing this upper bound fur-
ther, but not removing it. This work upholds a slightly different claim: in
this sense it is useful to try to model how the generalisation error evolves for
a training process. This derivation will follow the path of some previous lit-
erature[48, 55-57], with the hope of providing a more intuitive take on the
actual optimisation behaviour. Some necessary assumptions are needed,
which are mostly standard in this context:

Assumption 1 (Unbiased estimator). As in equation (2.6), the loss function
computed on one sample L(w, X) is taken as an unbiased estimator for the general-
isation loss E(w, D).

E(w) = Ex [L(w,x)]

Where the domain D has been dropped for brevity.

Assumption 2 (Bounded variance). It is assumed that the variance of the unbi-
ased estimator of assumption 1 is bounded by a constant o2.

Ex [[IL(w,x) — EW)|*] <0 vx.
Assumption 3 (Lipschitz continuity of loss).
IVE(w1) — VE(wo)| < £[[w1 —wol|, Vwo,wi.

Using assumption 3 and the descent lemma for Lipschitz-continuous func-
tions [58] it is possible to write the evolution of the generalisation loss for a
gradient descent step w1 = w; — 1> -0, VL(Wy, X;)

L
E(Wti1) < E(We) =0 VE(Wr) - (Weir = We) + o [Ween — wi |

1y

< E(w) —n Y _ VE(W) - VL(wy, X))
i=1

2

2
n°L
+2

np
Z VL(Wta Xi)
i=1

at this point it is convenient to define d o > (L(w,x;) — E(w)), therefore
the last inequality can be rewritten as

E(wis1) < E(wy) — 1 | VE(we) - d -+ my [ VE(w)| |

2L
+ L= lld+ my VE(wy)|

< E(wy) — | VE(w) - d + m, | VE(wo)||

L 2 2 2
+ L= [ld)? + 2md - VE(wi) + 1 | VE(ws) ]
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In order to understand the evolution of the test error, it is possible to move
to the expected values and use assumptions 1 and 2 to obtain E, [d] = 0 and

E. || = 2

2
B [E(wicn)] < Ew) — g [VE(w) [P+ 25 [o7 42 [ VEG)]P] - 29
—_——

descent term

variance term

Equation (2.9) shows how using a bigger 1, is beneficial as increases the
descent term, but it also increases quadratically the variance term, which in
fact hinders the convergence of generalisation error. This conclusion has
also been drawn by Ben-Nun and Hoefler [1], however the author argues
that, by applying the popular idea of batch gradient averaging instead of a
plain summation , as in equation (2.8), the variance term becomes

2 2
L (o 2
5 (5 + IvEw1)

where 1, has also the effect of suppressing the sampling variance.

The previous result apparently contradicts the idea of an upper bound
to the mini-batch size, moreover it looks like the suppressing effect on the
variance term might be beneficial to the training. However, transferring
this result in the real-life training of DNNSs is tricky. In fact, when using
large batches is hardly enough to average the gradients instead of sum-
ming: practical applications [50] reflect the need for much more careful and
problem-specific fine tuning of hyper-parameters with respect to smaller
batches. Moreover, the variance that is suppressed by n? is often times
beneficial in order to escape some bad local minimum or saddle point at
the beginning of the training, when the behaviour is heavily non-convex.
It is the author’s opinion that this fact is definitely related to the success
of a technique used by works exploiting very large batches: they usually
find beneficial to perform some kind of warm-up [50] phase, running earlier
epochs with smaller batches. In the light of the results derived in this sec-
tion, this can be traced to a transition from a non-convex regime where the
stochasticity of smaller batches is beneficial, to a convex regime of optimi-
sation, where larger batches are more effective.

As an additional remark, it can be noted that Ma et al. [48] leverage the
same formalism that led to equation (2.9) in order to proof that n, = 1 is
the optimal size in term of total samples (namely, the number of epochs)
required to achieve a certain result, however, the drawback of this analy-
sis is the same as the aforementioned one from Wilson and Martinez [35]:
computing 1, samples in a batch cost significantly less than computing 1,
times one sample, hence the number of epochs required to converge may
be larger, but it would be amortised by the much smaller time required to
compute such epochs. At least from a theoretical point of view.

This discussion highlights how theory does not really provide solid
ground to define the right approach to mini-batch size and subsequently, as
this hyper-parameter has a critical impact on the DL scalability (cf. Chap-
ter 3), there is no clear theoretical guidance to the approach to follow in
that case too. On the other hand, from the general consensus emerged from



2.2. Software for Deep Learning 19

literature, where the final answer is always delegated to experimental re-
sults, the author is eventually convinced that there is no theoretical upper
bound to the size of mini batches, but there are practical ones. From the ad-
ditional fine-tuning needed, to poor results achieved in the initial phases of
the training, stretching mini-batches has a significant impact on the train-
ing curves that requires some mitigation effort. Moreover, perfect speedup
for large batches is not always straightforward due to additional issues that
will be discussed in section 3.3, like batch normalisation.

This section presented the formalism and the aspects that will be rele-
vant in the following discussion: a thorough discussion of the topic from
the basics of statistical learning is out of the scope of this work. For the
reader interested in deepen his understanding of the theoretical founda-
tions of machine learning, the book by Abu-Mostafa et al. [23] is a good
starting point. With more focus on deep learning, the most comprehensive
work is provided by Goodfellow et al. [34].

2.2 Software for Deep Learning

The recent success experienced by deep learning methods had also the ef-
fect of animate the community of researchers and developers, that in turn
provided a large number of software tools dedicated to deep learning. This
paragraph will provide a brief overview of the most relevant of them and
their common feature.

2.21 Automatic differentiation and computational graphs

Backpropagation can be seen as a special case of automatic differentiation
[59, 60], which is a technique that is used to evaluate the derivative of a
function defined as a computer program. This technique exploits the fact
that any function can be, in principle, described as a sequence of arithmetic
operations which is subject to the chain rule for the derivative of composed
functions. This concept underlies all the current mainstream deep learning
framework like those listed below:

e Theano [43]
e Caffe [61]

Google’s TensorFlow [62]

Facebook’s PyTorch [63]

Apache MxNet [64]
e Microsoft’s CNTK [65]

In fact, all of them implement some kind of (dataflow-like [66]) graph de-
scribing the control flow and data structures of the neural networks, on
which automatic differentiation can be applied to calculate gradients [34,
p. 201].

Among the tools mentioned above, Theano and caffe are the only ones
to be mainly developed by an academic institution (Montreal Institute for
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Learning Algorithms, Université de Montréal and Berkeley Artificial In-
telligence Research Lab) and they were the first to gain widespread adop-
tion. The interest around the topic of deep learning and Al drove large
enterprises to invest in such tools, for internal deployment at first, and then
open sourced to the community. At the time of writing, the development of
Theano has stopped due to the maturity of industrial competitors and their
faster development pace.

2.2.2 Common features

Most of the mentioned software tools not only share the same theoretical
foundation, but they are in fact very similar in terms of structure and com-
ponents that they implement: they are usually written in C/C++, with Ap-
plication Programming Interfaces (APIs) provided in multiple languages,
with Python that is by far the most popular one in the data science commu-
nity. Their API usually allows to directly interact with the computational
graphs, and while some of them provide a higher-level API out of the box,
others do that by means of additional libraries, being Keras [67] the most
popular one. They also provide a large catalogue of operators to define
specialised neural network units and layers for image processing (e.g. con-
volutions [68]) and for natural language processing and speech recognition
(like recurrent neural networks [25, 69]).

Graphics Processing Unit (GPU) acceleration is another common point:
while the detail of these topic will be discussed in the next section, it is
relevant to remark that all the major deep learning frameworks provide
access to GPUs for training and inference, usually by means of proprietary
tools provided by the hardware vendor like the Nvidia CUDA toolkit [70]
and its specialised libraries for linear algebra and deep learning: cuBLAS
[70] and cuDNN [44].

Symbolic vs. Imperative

The only significant design choice that differentiates these framework is
the approach to the computational graph definition API, that can be either
symbolic (Theano, Caffe, TensorFlow, MxNet symbolic API) or imperative
(PyTorch, MxNet Gluon API) [71]. The relevance of this categorisation lies
in the large use of such terms when presenting DL software tools, which
usually make the use of one of these approaches their main selling point.
The symbolic approach defines the computational graph and executes it
in different steps, in this sense most symbolic-style programs contain, either
explicitly or implicitly, a compile step this converts the graph into a function
that can be called. The model of the DNN is fully defined before mapping it
to actual data structures allocated in memory. The imperative (or dynamic)
approach allocates and executes the graph as soon as it is written in the
code, allowing the developer to use native control flow within the definition
of the graph. Symbolic frameworks are in principle more efficient as they
are fully defined up-front and they can benefit from more optimisations,
however most frameworks nowadays offer both APIs and several ways to
get the best of both worlds. Finally, this categorization is more relevant
for who actually develops new DNN architectures, or at least for who is
concerned with node-level performance. Distributed deep learning is not
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really affected by the choice made at this level, provided that the neural
networks architecture is static; topologies that change during the training
may affect the capability to correctly communicate gradients and weights
between different workers, as their size and shape may change.

2.2.3 Typical training process

Algorithm 1 presents a pseudocode that describes the typical training pro-
cess for a deep learning model, as it is structured in most of the major frame-
works. The main features to be noted in this pseudocode are the initialisa-
tion phase (lines 1-5) where the training data is loaded, model is created
from a symbolic graph, either created by the developer of loaded from a
file, and it is compiled if needed by the API The there are two nested loops
that go over all the mini-batches in the dataset (line 8) as many times (line
7) as the give number of epochs for the training.

Algorithm 1 Pseudocode for typical training process

=

net <— Symbolic computation graph
data_iterator < training dataset

model < net.compile(input size, output size)
model.initialise_parameters()

opt < optimiser(learning rate)

for number of epochs do
while data_iterator has next mini-batch do

batch <+ data_iterator.nextBatch()
predictions <— model forward(batch.input())
model.backward()
opt.update(model, predictions, batch.output())
print accuracy(predictions, batch.output())

14: end while

15: data_iterator.restart()

16: end for

e e
I sl

2.2.4 Performance comparison

Given the number of similarities it is not surprising that the performance of
the major frameworks is very similar, this is particularly true when train-
ing on GPUs, where the heavy lifting is offloaded to the same computing
back-end by all of them. To the best of the author’s knowledge, the last
comprehensive benchmark comparing the performance of those tools has
been published by Shi et al. [72]. However, development is so fast that
those results are possibly not relevant any more. Moreover, those tools are
so complex and depending on different libraries that compiling and opti-
mising them to achieve the best performance on a given hardware is not
trivial, especially on CPUs. For instance, the author experienced a 20 times
speedup for MxNet on CPU by changing a single compilation flag, that in-
cluded an Intel-tuned library to accelerate deep learning operations [73].
The single node performance of these tools, given careful compilation
and deployment, is so similar that the choice of one of them for a given task
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should be based on different factors other than performance, for instance
the suitability of the API for a certain language and task. The common
opinion, though, is that MxNet and CNTK are more “production oriented”,
while TensorFlow and PyTorch are more “research oriented”, however the
latter is catching up quickly, as in version 1.0 included most of the features
of the Facebook’s C++ production framework Caffe2.
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Chapter 3

Performance and concurrency
in deep learning

This chapter will discuss what are the main factors that affect the perfor-
mance of deep learning tasks, and what are the chances to exploit parallel
architectures: in this context it is remarkable that the directions to achieve a
performance improvement concerning a deep learning model are so many
that it is not possible to explore all of them in detail in a single work, hence a
brief overview will be given, reserving the right to further elaborate on the
points that are directly related to this dissertation. However, the interesting
upside of this variety is that most of these techniques are in fact orthogonal
to each other: the verticalisation of one technique, does not affect the capa-
bility to exploit other directions for further improvement, given sufficient
problem granularity and enough computational resources.

The discussion about performance and parallelism in DNNs will start
from the most elementary building blocks of the neural networks, up to
multi-node parallelism at large scale. However, before proceeding to inves-
tigate concurrency opportunities, it is useful to briefly discuss the two main
categories of deep learning workload to better frame the scope of this work.

Training vs. Inference

While the focus of deep learning research has mostly been on the train-
ing phase, the wider adoption in production contexts highlighted a whole
new set of requirements for deep learning workloads, such as the need to
perform inference (namely, prediction) based on an pre-trained model in a
highly time-constrained or power-constrained environment. This led to the
distinction of training and inference as the two main deep learning work-
loads. This works focuses on the training workload, that will be discussed
in detail in the following paragraphs, however it is worth to highlight the
peculiarities of the inference workload and the main differences with train-
ing.

The typical setting for DL training is a controlled, possibly research-
focused environment, where computational resources are abundant (e.g.
cloud infrastructure, HPC centre, with GPUs available) and time is only a
loose constraint. Data is usually available in batch mode, namely randomly
and quickly accessible, and the granularity of the task is quite large: limited
by the size of mini-batches.

On the other end, inference is usually based on models trained in ad-
vance that are deployed in production environments and that are required
to give answers to customers or other devices in short time frames (up to
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real-time). Data in this environment is usually available as a stream, where
the granularity is as small a single sample at time. A typical use case for the
inference workload is within autonomous vehicles or for mobile applica-
tions that leverage computer vision or speech recognition. These scenarios
require very fast responses and usually set very tight constraints on the
amount of computational power, let alone the power consumption itself.
Usually inference workloads leverage specialised, low power, hardware
architectures like Field Programmable Gate Arrays (FPGAs), Application-
specific integrated circuits (ASICs) or others [74, 75], and software specific
for inference [76].

In short, the performance focus for training is on throughput (e.g. num-
ber of images processed per second), while the key to inference perfor-
mance is latency (e.g. response time for the prediction of a single sample).
The focus of this work is strictly on the training phase.

3.1 Overview

Figure 3.1 presents all the relevant approaches that have been explored in
literature and practice to improve the performance of DNN training. It also
resumes the main remarks about the specific approaches that will be pre-
sented in detail in the following paragraphs.

The different techniques are aggregated based on the scale of their re-
spective parallelism: in fact, as happens for most scientific computing ap-
plications, it is possible to achieve performance improvements by work-
ing on a single node, by means of optimised neural network operations
that leverage multiple cores, vector extensions, or dedicated hardware like
GPUs; by adding multiple accelerators on the same node (scale-up); or by
distributing computation on multiple computing nodes (scale-out).

It should be remarked that this classification is not the only choice: in
fact it is also possible to aggregate techniques based on the similarity of
the theoretical approach: for instance, model parallelism is a declination of
network parallelism that usually refers to a specific set of techniques used in
a multi-device or distributed set-up. The discussion below does not strictly
follow the order that these two possible classifications may suggest, on the
other hand it tries to build a logical path that touches all the relevant points.
Finally, this work is focused on distributed data parallel training, hence the
detailed discussion of other techniques is in part delegated to the references
provided.

3.2 Network parallelism

3.2.1 Layer computation and backpropagation

As already stated, the operations described in figure 2.2 can be expressed
as a chain of matrix multiplications and element-wise operations, but this is
straightforward only in case of fully-connected layers, namely layers where
each unit receives inputs from all the units in the previous layer. For con-
volutional [68] and recurrent [25] layers it is not as trivial, however linear
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algebra routines are still at the core of deep learning workloads. The typi-
cal input of a deep neural network is a tensor with a certain number of in-
dices. For instance, considering the case of image classification, the indices
are usually four: index of the sample in the mini-batch, vertical position of
the pixel, horizontal position of the pixel, and index of the color channel.
This structure can be exploited to parallelise the execution of layers of the
DNN and, as already stated, this operation is trivial in the case of fully-
connected layers where the major factor impacting the performance is the
implementation of the GEMM routine. While the API of GEMM is a de-facto
standard set by the Basic Linear Algebra Subprograms (BLAS) library [77],
nowadays many implementations are available, the most popular being In-
tel MKL [78], OpenBLAS [79] and cuBLAS [70] for GPU.

Convolutional layers usually take the largest share of computation in
image classification tasks, but they are not directly suitable to be expressed
as matrix multiplication, hence there is usually an intermediate step that
transforms the convolution kernels into a different function that is suit-
able to be executed as a batch of multiplication-accumulation operations
on highly parallel architectures. Thereare several ways to transform con-
volution layers, the most relvant are: the so-called im2col [80], which trans-
forms the convolution into a matrix multiplication using Toeplitz matrices;
the implicit GEMM method, that saves on memory by not materialising the
Teoplitz matrix [44]; the Fast Fourier Transform (FFT) method [81]; and the
Winograd method [82], which is the prevalent approach nowadays. All of
these different approaches have strenghts and weaknesses: software imple-
menting deep learning primitives, like Nvidia cuDNN [44] and Intel MKL-
DNN [73], usually choose among several implementations of convolutional
filters based on the specific features of the workload, possibly runnig inter-
nal benchmarks to pick te best performing one. Also the order of the indices
in the input tensor (that represents the memory layout of the data) plays a
role in the performance of the convolution [83]. Recently, Vasilache et al.
[84] introduced a technique based on polyhedral loop transformations and
code generation, that should allow developers to specify custom convo-
lutional operators and still benefit from advanced optimisations, achieving
performance comparable to hand-tuned implementations provided by ven-
dor libraries.

Finally, also recurrent units can be accelerated by carefully applying
concurrency both within the layer itself, or among consecutive layers: a
comprehensive review of these techniques has been published by Apple-
yard et al. [85].

3.2.2 Model parallelism

Model parallelism involves the partition of the model computation graph
among different workers, that train different parts of the same model in-
stance. It has been proved to be an efficient way to improve the perfor-
mance of DNN training [86, 87], in particular, layer pipelining [88-90] is a
very effective strategy to allow training of models that normally would not
tit the memory of the training device.

As the focus of this work is on data parallel techniques, a full inves-
tigation of this topic is out of scope, nevertheless it can be argued that
model parallelism capacity to scale beyond the single machine is limited
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by the higher frequency of communications required with respect to data
parallelism, especially if the distributed workers are loosely coupled (i.e.
cloud instances without dedicated interconnection, edge devices). More-
over, model parallelism can be used transparently within a distributed data
parallel set-up to improve node-level performance, hence it represents an
orthogonal direction of improvement with respect to data parallelism. In
fact, while this aspect is not explored in this work, it can be quickly added
to the data parallel strategies discussed later as a further layer of concur-
rency without impacting the following discussion.

3.3 Data parallelism

Despite the widespread use of the term data parallel in deep learning liter-
ature, the definition that is used in this context is not the same that is well
known for parallel and distributed computing [91, p. 170]: by the classical
definition, in fact, also most of the techniques mentioned in the previous
sections involve some kind of shared memory data parallelism. In the deep
learning context, by data parallelism it is indicated any parallel algorithm
that works by processing different samples or subsets of the training dataset
at the same time.

3.3.1 Mini-batches and GPUs

The previous section introduced mini-batch parallelism as the most elemen-
tary way to achieve parallelism in DNN training [92]: in particular it is the
simplest way to achieve what is defined in the context of deep learning
as data parallelism. In the case of mini-batches, n, samples are processed
concurrently, possibly on a many-core device that may achieve tremendous
speedup by means of optimised GEMMs, such as GPUs [42]. Figure 3.2
shows the performance improvement that can be achieved using the GPU
on a typical image classification workload.

The range of batch sizes that are feasible to be used on a single device
falls typically well within the green area of figure 2.5: the upper bound
of batch size is usually imposed by the memory of the device itself. In
this context the theoretical applicability of larger batches is less of a con-
cern, on the other hand, Batch Normalisation (BN) [95] presents a potential
performance bottleneck. Batch normalisation [95] computes statistics along
the mini-batch dimension, introducing data dependencies between differ-
ent samples among the same mini-batch, such that a full synchronisation is
required at each invocation. Several solutions has been proposed to work
around this issue [YouScalingSGDBatcs sh2017, 50, 96, 97], yet they all re-
quire to relax some constraint on the formulation of BN.

Parallelism at mini-batch level proved to be effective at node-level when
implemented on GPUs, multi-core CPUs or other dedicated hardware (e.g.
Google TPUs [98]); still, its performance portability to distributed memory
architectures is subject to a suitable problem granularity and must be inves-
tigated separately.
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FIGURE 3.2: Time to train 1 epoch of ResNet18-v2 [93] on

the CIFAR10 dataset [94] with MxNet, MKL-DNN [73] and

cuDNN [44]. Large variance of CPU performance is due to

the progressive worsening of compute time as the epochs

go on; the nature of this effect is still unclear. CPU: 2x Xeon

E5-2680 v3, 12 core 2.5Ghz. GPU: Xeon E5-2650 v2, 8 core
2.60GHz + Nvidia Tesla K40.

3.3.2 Distributed training

Distributed data parallel training entails a number of workers training (pos-
sibly identical) model replicas on different partitions of the dataset. Liter-
ature classifies the several different approaches to distributed training on
two main axes: model consistency and parameter distribution and communica-
tion. The first axis reflect the property of model replicas to have equal val-
ues for the weights w at any given instant, the second involves the differ-
ent communication approaches (e.g. topology, compression) used to trans-
fer gradients and weights between different model replicas. Sometimes an
additional axis is also considered [1], regarding a specific category of dis-
tributed training approaches that this work places on the far end of the
model consistency spectrum, without the need of a further axis to discrim-
inate.

This section will explore the spectrum along the model consistency axis,
while spanning the other one when necessary.

General remarks

Section 2.1.2 stated that naive SGD is intrinsically sequential. Figure 2.3
and equation (2.7) show how the gradient value depend on the present w(t)
configuration and how its application through back-propagation produces
anew configuration w(t+1): the new weights represent a data dependency
for the feed-forward step for sample x;,;, that must come strictly after the
back-propagation, otherwise the gradient would be calculated based on
outdated (stale) weights. Gradient staleness is a property of a gradient that
is computed based on a given set of weights (e.g. w(t)), but is applied to the
model at a later stage (i.e. when the model is in configuration w(t + k)).

In principle this data dependency between subsequent SGD steps pre-
vents any kind of input sample-based parallelism while, in fact, this is true
strictly for on-line SGD: the concept itself of batch (or mini-batch) gradient
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FIGURE 3.3: Gradient descent in w space.

8§, = —nVL(w(t),x;) represents the gradient calculated

on the weights updated up to step t, based on sample

(or mini-batch) x;. Therefore, the red update based on

62 is outdated with respect to w(1), but its impact is not

necessarily detrimental to the training. The target function
isL:R" —» R.

descent involves parallelism. The gradients related to all the samples in the
(mini-)batch are computed based on the same value of w and, possibly, at
the same time. It is worth noting that the data dependency depicted in fig-
ure 2.3, is introduced by on-line training algorithm and not by the problem
itself, hence there is room to relax this dependency, either with mini-batches
or with more sophisticated techniques that relax the dependencies between
mini-batches. Figure 3.3 exemplifies a possible behaviour of SGD on a loss
surface: it is not necessarily true that using always the most recent gradi-
ent leads to the best training accuracy, even the red update could end up to
good loss minimum. In this sense is important to remember that the loss
surface of DNNs is highly non-linear and difficult to describe globally [31,
99]: a certain amount of noise and randomness associated to the gradient
descent can be beneficial to the training outcome in terms of generalisation.
The next subsections will describe how this behaviour can be exploited to
introduce some degree of parallelism into the training process.

Wheter stale gradients are in general beneficial to the convergence of
the training is an open reasearch problem, no clear answer is avaialble at
this time. For instance, asynchronous approaches benefit from strategies
that try to keep the amount of gradient staleness under control [100], while
on the other hand, the concept of staleness can be linked to the idea of
momentum applied to SGD, which usually improves training convergence
[101]. A reasonable conclusion appears to be that some degree of gradient
staleness is acceptable, if not beneficial to training, while too much staleness
is detrimental. Still, where to put the threshold on staleness is not clear and
possibly it is problem (and approach) dependent.

As a final side note, the usual formulation of SGD involves sampling
data with replacement. On the other hand, most of the mainstream tech-
niques discussed below partition the data among workers without replace-
ment, possibly applying reshuffling of data between epochs [50].

Synchronous

Synchronous SGD training represents the extension to the distributed do-
main of the mini-batch concept: assuming the local mini-batch update as
an atomic work unit on the single node, the synchronous training involves
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multiple model replicas running independent backpropagation steps on
different mini-batches, then adding together all the obtained gradients. The
workers the proceed with mini-batches in a lock-step way. Given K different
workers, each one training its own model replica with a mini-batch size of
1y, it is trivial to prove the following

Theorem 1. Considering the mini-batch gradient averaging set-up (cf. eq. 2.8)
and given uniform learning rate, the set of weights w(t + 1) obtained by a syn-
chronous aggregation of K workers with batch size of ny, is the same as the one
obtained by a single node with batch size of K - ny, if the updates are also divided by
the number of workers K.

Proof

Given the input dataset X = {xi,...,xyn}, the proof is
obtained by writing the sum of all the individual workers’
updates as in equation 2.8.

K—-1
Wt 1) =w(t) =D SLWE), X i in, )

Recent works [50-54] have demonstrated that it is possible to push the
mini-batch size further than previously expected without affecting the model
convergence. These works leverage distributed GPU architectures in order
to allocate and efficiently compute such large mini-batches, while relying
on an all-to-all communication pattern [91, p. 121] to collectively average
the gradients (all-reduce operation, using Message Passing Interface (MPI)
nomenclature [102]). Figure 3.4 depicts the aforementioned approach, which
will be also referred to as large mini-batch. While more common in the asyn-
chronous case, it is also possible to use a centralised Parameter Server (PS)
to aggregate gradients, which are then broadcast back by the PS to all the
workers to start the next batch.

Section 2.1.2 discussed widely about the opportunity to push the batch
size so far and, apart from the theoretical issues of convergence and batch
normalisation, it must be taken into account that the large mini-batch ap-
proach may suffer from a significant communication bottleneck due to the
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FIGURE 3.4: Synchronous SGD, a.k.a. large mini-batch ap-
proach.

all-reduce operation required at every step. In this sense several techniques
to reduce the impact of communications will be presented later in this chap-
ter.

Note that theorem 1 holds for naive SGD holds also for momentum-
based algorithms, as also stated by Goyal et al.[50] and formalised by the
following theorem.

Theorem 2. Given SGD with a momentum term p < 1 defined recursively as
w(t+1) =w(t) — v

where
0 = oy + 1 0L(w(t), X)

The weight update for a single worker with batch size K - ny, is equivalent to the
synchronous weight update of K workers with batch size ny,, where the gradients of
each worker are divided by the number of workers.

This entails that each worker should communicate the update as

% SL(w(t), X)

in order to preserve the correctness with respect to the sequential version.

This Follows from theorem 1: as everyone’s v;_; term is the consistent,
due to the synchronous behaviour, the only critical requirement is to take
into account the number of workers when averaging gradients, as happens
in the plain SGD case.

Asynchronous

The success of momentum [46] as a method to accelerate the training con-
vergence, show that the information of previous gradients is definitely rel-
evant even at the current iteration. Although the idea of trading gradient
staleness for computational efficiency has been at first exploited for what
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is defined asynchronous parallel training. As the name suggests, this strat-
egy involves multiple workers performing their own gradient descent for
a certain amount of iterations, while their findings (i.e. new weights, ac-
cumulated gradients) are shared with other workers without a global syn-
chronisation at the mini-batch level. Figure 3.5 depicts the typical set-up
with a centralised parameter server and multiple workers that asynchron-
ously send gradients to the PS and receive back updated weights.

This kind of approaches sits midway through the model consistency
axis, and it is possible to discriminate between centralized and de-centralized
implementations along the parameter distribution axis. In practice, the lat-
ter categorisation regards the usage of a centralized parameter server to store
a “master copy” of the model weights or, otherwise, to coordinate the ex-
change of gradients without a central authority. Early notable implementa-
tions of asynchronous parallel gradient descent are HOGWILD! [103] and
its deep learning-focused derivatives like Downpour SGD [86, 104]; fol-
lowed by some other significant works [100, 105-110]. Apart from the Dis-
tBelief [86] and Project Adam [104] papers, that presented results previously
not achievable and moved deep learning resolutely into the HPC domain,
most of other works, while reporting solid scalability and timing results,
were not able to provide a significant legacy. In fact, the dominating en-
tries from DAWNBench [111, 112], at the time of writing, are still relatively
small-scale, synchronous implementations.

mini-batch
execution

Parameter server  w(t;) w(t) w(t3)

A 4

Time

FIGURE 3.5: Asynchronous SGD with parameter server.
The second batch of worker B is based on stale gradients,
as its first update failed due to the busy PS.

While this review is far from being conclusive, it suggests some limita-
tions that arguably prevented widespread adoption of asynchronous tech-
niques. For instance, the added complexity of a parameter server or a
sophisticated decentralized protocol might be perceived as not necessary
since synchronous, all-reduce-based, parallelism has mostly satisfied the
quest for deep learning scalability up to this point. Moreover, most of these
works present asynchronous implementations of naive SGD, while the state
of the art is moving to more sophisticated algorithms like ADAM [47].
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Some effort in this directions exists [113], as well as a prominent theoretical
work [101] that links gradient staleness to momentum,; still, the literature
is lacking a comprehensive analysis of the asynchronous behaviour of al-
gorithm beyond SGD. Finally, results are usually reported as a collection of
experiments on specific use cases, lacking a generalisation effort that might
help to understand the validity of the methodology. In this sense a relevant
analysis has been performed by Lian et. al [114]: the theoretical discussion
of the convergence rate for an asynchronous, decentralized algorithm rep-
resent a good starting point for a performance analysis. However, it can be
argued that the real life behaviour is affected by a large number of variables
(e.g. weight update protocol, communication latencies, etc.) that prevent
this model to fully describe the performance of a given implementation.
These limitations, along with the lack of details on the code and framework
used for experiments, call for a research effort that aims to fill the gap be-
tween sparse experimentation and mathematical modelling of convergence
rates.

Overall, the choice between a synchronous and an asynchronous ap-
proach is not trivial. The practitioner would probably choose the former
given the large number of production-level implementations readily avail-
able, but the researcher should not stop there. It is a hard task to charac-
terise the two approaches in terms of their relative performance, an intu-
itive take would be to assume that synchronous strategies provide more ac-
curacy, while asynchronous ones are directed towards efficiency, but there
is no clear consensus. Given the literature reviewed, it is reasonable to con-
clude that synchronous methods are more efficient both in terms of raw
speed and convergence than asynchronous ones when considering their
preferred area of application (i.e. small-to-medium scale systems, tightly
coupled, with hyper-parametrization to accommodate large batches), while
some other scenarios are more favourable to asynchronous methods (i.e.
very large scale, less tightly coupled systems with need for fault tolerance
[86, 104]), despite the heavier fine-tuning needed for hyper parameters.
Chapter 6 will mostly deal with the former scenario.

Other approaches

At the most inconsistent end of the model consistency spectrum, Model av-
eraging [115, 116], like Elastic Averaging SGD (EASGD) [117], allow concur-
rent model replicas to perform training independently up to a certain point
(i.e. from several mini-batches to multiple epochs), then the weights are
averaged among the different replicas. Ensemble learning [118, 119] is an em-
barrassingly parallel approach that performs the whole training on different
model instances defined by different hyper-parameters, then averages the
predictions among them. As said before with respect to model parallelism,
ensemble learning represents an orthogonal direction of improvement with
respect to parallel gradient descent, hence it will not be discussed hereafter.
On the other hand, while it is out of scope to formally draw the connec-
tion, model averaging is strictly related to the techniques presented in the
previous paragraph, where instead of exchanging gradients, there is an ex-
change of weights.
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Figure 3.6 resumes the methods introduced in this section along the axis
of consistency and communications.

Less consistent

PS-based
synchronous
SGD

All-reduce Broadcast-based |} GossipGrad,
synchronous asynchronous Nearest-
SGD SGD Neighbours

FIGURE 3.6: Taxonomy of different approaches to dis-
tributed deep learning.

Further parallelism issues

As already said in this chapter, mini-batch parallelism tends to be per-
formed within a single node, either in shared memory or distributed among
multiple GPU. The computing horsepower provided by GPUs or other ded-
icated hardware is usually enough for most applications, still, there is the
need to push the capability to train DNNs effectively beyond the single
node. While large mini-batches and asynchronous techniques can be ap-
plied also within a single machine when the problem is small enough, rep-
resenting an interesting research domain itself, they are born to be dis-
tributed; this raises a number of issues related to the communication of
gradient updates.

The size of the gradient set (AL(w, X(; i;,—1))) for a state of the art DNN
easily reaches a few hundred MB [120]. This represents a serious bottleneck
for distributed implementations and two main techniques are used to re-
duce the size of the gradient set to be transmitted: quantization and sparsi-
fication. The former intends to reduce the precision of the gradient repre-
sentation in order to reduce its overall size and it is demonstrated that this
technique works up to 1-bit representation [106, 121]; the latter exploits the
sparsity that naturally occurs in DNN gradients, where most of the com-
ponents are zero or almost zero. In this way the array gradient component
can be represented as sparse and compressed with well-known techniques
[106]. A more recent work [120] also includes momentum in the discus-
sion and presents interesting results. Also in this case, apart from the 1-bit
quantization provided by Microsoft CNTK [65], the frameworks used are
not mentioned nor the code is made available.

More methodologies can be exploited to enhance the performance of
distributed training, like the optimisation of the all-reduce pattern required
by the large mini-batch training or the overlapping of computation and
communication during training. Even if these techniques fall more in the
domain of the implementation details than in the field of parallel training
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algorithms, they play a non-negligible role in the overall training perfor-
mance.

3.4 State of practice

The previous section stated how DAWNBench [111, 112] entries are mostly
synchronous implementations with a few nodes and a high density of GPUs
per node. This is mostly true also for the recently announced MLPerf bench-
mark [122]: an industry wide effort to set standard metrics for machine
learning tasks performance.

A brilliant example of the trend of performance-oriented deep learn-
ing machines is the DGX/HGX series of machines by Nvidia [123], or the
Big Basin architecture from Facebook [124]: single nodes with an extreme
density of GPUs and high-performance interconnection between graphic
processors that allow to perform communication collectives among them
without moving data to the host memory. This kind of deployments are
usually enough to handle most industrial training workloads, on the on-
ther hand, in the research environment it has been observed a clear conver-
gence between “conventional” HPC and deep learning-oriented infrastruc-
ture. For instance, the world’s most powerful HPC machine at the time of
writing [125] is clearly designed with DL workloads in mind [126], given
the 6 Nvidia tesla V100 GPU per node. This kind of extreme scale machines
with thousands of nodes, definitely require a novel take on the distributed
training strategies, as naive synchronous SGD might not be applicable at
such scale.

Finally, it is very hard to find any recent trace of asynchronous imple-
mentations from either software tools documentation, benchmarks, indus-
trial deployments, and research papers. This is even more true for model
averaging techniques, that seem to be completely left behind by the com-
munity.

3.4.1 Implementations

On the software side, all the major frameworks among those listed in sec-
tion 2.2 (Tensorflow, PyTorch, MxNet and CNTK) implement a synchronous
version of the SGD either based on all-reduce operationsor on a parameter
server. Some also implement an asynchronous training mechanism, like
MxNet, however it seems more like an afterthought solution, and the au-
thor was not able to get any of the examples provided in the documentation
to converge, even with only 2 workers. External tools that allow the frame-
works to run in a distributed fashion are also available, like Horovod [127],
which is it compatible with Tensorflow and MxNet. While interesting, as
compatible with multiple frameworks, Horovod is only able to run syn-
chronous SGD, thus is limited by the suitability of large mini-batches.Below
there is a review of what is implemented by the major frameworks.

TensorFlow

Originally based on and external Spark runtime for distributed training,
TensorFlow now implements its own built-in distributed training runtime
based on gRPC [128] for communication. It provides both synchronous and
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parameter-server based strategies. At a lower level, it also allows to parti-
tion the computational graph among different executors to achieve model
parallelism. TensorFlow provides proper strategies to leverage its cloud-
based TPU clusters.

PyTorch

Before version 1.0, PyTorch used to provide a minimal approach to dis-
tributed training, based on point-to-point and collective communications
modelled on those offered by MPI. At the time of writing it is also offered a
distributed data parallel training module, that automatically performs syn-
chronous SGD on multiple nodes or GPUs. Communication is either based
on plain TCP sockets, MPI or Gloo [129], Facebook’s collective communica-
tion library based on Nvidia GPUDirect [130] for optimised GPU-to-GPU
communications.

MxNet

MxNet built-in distributed runtime is somehow mature and provides ded-
icated launcher scripts for many cluster configurations and scheduling sys-
tems (e.g. ssh, MPI, Slurm and kubernetes-based clusters) and it is fully
based on a PS approach in the shape of a distributed key-value store. Despite
being based on a parameter server, it implements both synchronous and
asynchronous strategies and the communications are based on ZeroMQ [131].
There is also support for gradient compression using quantisation. MxNet
also advertises built-in support for the Horovod library.

Horovod

The main feature of Horovod is that it provides interfaces for all the previ-
ous frameworks, allowing the developers to leverage a high-performance,
distributed implementation regardless of their choice of DL framework. It
is based on MPI and Nvidia Collective Communications Library (NCCL)
[132] for high-performance all-reduce operations, however it only imple-
ments synchronous SGD.

3.4.2 Performance metrics

Early efforts of parallel and distributed training, starting from naive single
node, multi-GPU implementations, used to state the number of images pro-
cessed per second as the main performance metric. This may have been suf-
ficient as the global mini-batch size was still largely in the feasible range so
that accuracy was not affected, however, the scenario is quite different now
that the batch sizes allowed by a single device are much larger, let alone the
global batch size reachable by a few nodes with synchronous SGD. More-
over, industrial players are used to release thunderous claims about their
machines’ capability to perform incredible amounts of Operations per Sec-
ond (OPS), when considering lower than 64-bit precisions. There is the need
to define performance metrics that actually reflect the capability to train a
model faster by going distributed.

Hoefler presented an interesting point of view [133] about the possible
pitfalls of performance evaluation of parallel deep learning; his remarks
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provide some useful inputs to this investigation. In particular, the main
metric that should be considered in any deep learning performance discus-
sion is the Time-To-Accuracy (TTA), namely the wall-clock time needed to
reach a certain, pre-defined, fest accuracy. The interesting outcome of learn-
ing is indeed a trained model able to make useful predictions, hence the
relevant time to be considered is the one needed to achieve such model.
This kind of measure is also commonly referred to as end-to-end training
time. This is relevant as often times it is only reported the time to run one
epoch of training, which is hardly meaningful if the training does not con-
verge quickly. In chapter 5 the time per epoch will be also presented, but it
will be carefully put into the right context, without using it as a replacement
for TTA.

The discussion about performance measurement of deep learning mod-
els should also try to discern between strong and weak scaling: in fact there
are two different points of view that can be adopted, the first considers
end-to-end training as a single task and uses TTA as its only metric to eval-
uate performance. In this case any parallel algorithm that can train a net-
work in less time than what required by the state of the art approach scales
strongly. Under this assumption, synchronous, very large mini-batch ap-
proaches that can train on the ImageNet dataset [134] in 1 hour and less
[50] with respect to single node training are scaling strongly. However, at
a closer look, these methods are not accelerating the inner mechanisms of
training, but they are only exploiting a grater scalable parallelism in the
form of large input data (larger mini-batch), which matches exactly the def-
inition of weak scaling. It is the author’s opinion that those two views are
complimentary: at the end of the day, data scientist are interested in faster
training, whatever the methodology to achieve it, hence the former view is
fine to evaluate the performance of training. Nevertheless, improvements
in this field can not only come from large scale distributed solutions, hence
there is also the need of a concurrent effort to improve the performance at
lower level (i.e. operators, layers and networks) that is both on software
side and on (specialised) hardware side.

The most interesting point of Hoefler’s discussion, however, is the fact
that most of the time, despite presenting a good TTA, it is foregone the
time needed to tune hyper-parameters in order to achieve reasonable con-
vergence for the training. Hyper-parameter tuning is in fact a very time
consuming process: any technique that can achieve scalability without re-
quiring very careful fine-tuning can bring a great contribution to the field.
In fact this will be the main advantage of the strategy proposed in the next
chapter.

3.4.3 Summary

In this work it has been stated multiple times that most of the approaches
presented in previous works are in fact orthogonal, hence can be applied
together to achieve better performance, if the amount and the architecture
of computational resources allows. This allowed the author to focus on a
specific class of parallel approaches to deep learning, without sacrificing
the potential advantages carried by other classes. This class is identified
in figure 3.1 by the distributed, data-parallel branch. The next chapter will
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discuss the limitations of current approaches and proposes a new take on
this class of algorithms.
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Chapter 4

Nearest Neighbours Training

This chapter will leverage on the knowledge summarised in the previous
ones to review the limitations of current approaches and to propose a differ-
ent take on distributed deep learning, highlighting the expected improve-
ments over mainstream solutions.

4.1 Limitations of current techniques

4.1.1 Synchronous methods

Section 2.1.2 discussed in depth the impact of mini-batch size on the ex-
pected convergence of training. Based on that discussion and, above all, on
equation 2.9, the following subtleties are required when dealing with large
mini-batches:

e careful and problem-specific optimisation of the learning rate;
e smaller-batch warmup phase

and yet the convergence of larger batches is typically slower that SGD with
smaller ones. Nevertheless, large batches allow, up to a reasonable amount
of nodes, to scale easily and almost linearly, hence the success that brought
this methodology into all the major frameworks.

The heavy fine tuning required, though, can be a major bottleneck when
developing new models, or possibly training on datasets that are not the
well-curated ones used in literature: in fact large infrastructures might not
be readily available, hence there is first an expensive search for optimal hy-
per parameters during the research phase, then an additional optimisation
is required for large infrastructures without guarantees of success. Also,
while batch size can be pushed quite far, this tuning becomes harder and
harder as n, grows, causing a granularity problem: large mini-batch paral-
lelism requires the global mini-batch size to grow in order to (weakly) scale,
otherwise is not effective. A practical, even if not theoretical, limit on the
batch size, also limits the applicability of this approach.

Moreover, synchronous methods require either frequent all-to-all com-
munications or a parameter server which is expected to be flooded with
updates at the end of every mini-batch. This fact can possibly hinder the
scalability of this approach when considering large deployments, where
the amount of communication can become overwhelming also for high-end
HPC machines. Given the aforementioned issues, it is reasonable to state
that for all practical purposes, the mini-batch size has an upper bound in
the range of a few thousands samples.
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The communication scheme of synchronous SGD is also detrimental to
the portability of such strategies outside HPC infrastructures or cloud envi-
ronments. In particular, the envisioned perspective of edge computing entails
a large number of agents acquiring and processing data locally, while pos-
sibly creating machine learning models on the without moving the data to
a centralised warehouse. Whether the need of not moving the data is dic-
tated by technical or privacy-related reasons, the low-bandwidth, loosely
coupled environment where the devices operate is not suitable for them to
train cooperatively in a synchronous fashion.

4.1.2 Asynchronous approaches and model consistency

Assuming that using very large mini-batches is not generally suitable for
any application, it would be natural to investigate asynchronous methods,
that in theory sport good convergence properties thanks to gradient stale-
ness mimicking the behaviour of momentum [101], that is itself quite bene-
ficial to the accuracy. Moreover, they require less frequent communications
[135], so they are definitely a good candidate to achieve scalability at scale
without affecting the convergence of training.

On the other hand, there are a two major issues with this category of
parallel SGD: a pratical one and a theoretical one. The former regards the
amount of ad-hoc solutions needed to achieve convergence at scale, which
is exemplified by the DistBelief work [86]: achieving convergence with
asynchronous methods without prior and deep knowledge of the prob-
lem is even more difficult than with large mini-batches. Then, it is pos-
sible to show that asynchronous methods are, at least in principle, only
an asymptotic approximation of synchronous SGD, also sharing the same
weaknesses.

To introduce this idea, it can be shown that, despite usually being treated
as different approaches, all the synchronous and asynchronous techniques
are in fact all eventually consistent. To proceed it is useful to introduce the
following

Property 1 (Communication completeness). Let

p:{plv"'vpf}

be the set of processors participating in a communication. Such communication
is said to be complete if every message sent by a processor p; is received, with a
bounded or unbounded delay, by all other processors {p; : j # i}.

A statement can be formulated from here that, while being quite naive,
is still important to understand the behaviour of model replicas

Proposition 1 (Potential consistency). Assuming a mini-batch SGD without
momentum in a distributed setting, if property 1 holds for gradient communication
all model replicas can potentially be consistent.

from which derives

Proposition 2 (Eventual consistency). Assuming proposition 1, if all the gradi-
ent updates generated by all the processors are actually applied to all the recipient
model replicas, regardless of the delay, these will be eventually consistent.
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FIGURE 4.1: Diagram of weights updates between two

workers. wg is the common starting configuration. Assum-

ing that all the updates that are not immediatly applied are

queued in a per-worker buffer, commutativity and associativ-

ity of vector sum guarantee that A and B will always be consistent
once the buffers are emptied.

Figure 4.1 presents the diagram of subsequent gradient updates for 2
workers: using commutativity and associativity of the vector sum that rep-
resent the gradient update, it is trivial to prove that, if an event triggers the
application of all the pending updates (e.g. a global synchronisation), what-
ever is the state of both workers before the event, their state will be consis-
tent afterwards. Of course proposition 2 does not hold if, for instance, up-
dates not yet received are simply dropped, instead of accumulated. More-
over, it must be highlighted that having consistent model replicas does not
mean that the result is the same as the sequential implementation, but only
that all the model replica will agree on the value of w at a certain time in
the future. In this sense workers are eventually consistent, as most of the
strategies proposed either accumulate all the updates in a parameter server
or require a synchronisation at each epoch [106] (or at fixed time frames) or
both. This leads us to the following

Proposition 3. Given property 1, there is no need to distinguish between central-
ized and de-centralized set-ups, as the eventual consistency is granted.

In this view the centralized parameter server is only a way to simplify the
implementation of asynchronous SGD as well as inducing artificially some
staleness (along with the obvious communication bottleneck), that can be
beneficial to the training, but the same approach can be replicated with a
decentralised approach with broadcasts [106].

The relevance of this discussion becomes clear as the goal of this work
is to exploit more parallelism without resorting to large mini-batchs, but if
workers in figure 4.1 always go through the received branch, the outcome is ex-
actly equal to the large mini-batch strategy. Less trivially, it is possible to figure
that this is exactly what happens in an homogeneous, de-centralized set-
up, where the load is perfectly balanced and updates are broadcast by each
worker to all the others [106], making an asynchronous solution not differ-
ent from a synchronous one. Of course it can be argued that not enforcing
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explicit synchronisation can benefit scalability on very large-scale deploy-
ment, however, it would still represent, at most, an approximation of very
large mini-batches.

This paragraph presented a slightly different take on the weaknesses of
the asynchronous approaches with respect to other works [136, 137], which
highlight the drawbacks of the communication bottleneck represented by
the PS architecture, or the complexity required by a hierarchical PS, both
of which can jeopardise the constant communication complexity granted
by the centralised approach. Moreover, the tuning effort needed to achieve
convergence is significant, and requires sequential warm-up as happens for
some large mini-batch approaches. Essentially, the bottom line of this dis-
cussion can be resumed saying that asynchronous SGD shares the same
issues of synchronous SGD, without significant improvements in the com-
munication efficiency, while being even harder to tune for convergence in
real-life problems.

4.2 Proposed approach

Previous considerations lead to identify a common property of all the pre-
sented approaches: a complete communication graph as defined in property 1.
In fact this is the assumption that guarantees the eventual consistence of
all the workers (cf. proposition 2), and that also supports the asymptotic
equivalence between synchronous and asynchronous methods. This equiv-
alence is the key to identify potential new strategies: this research effort
originally started by investigating how to make asynchronous methods
more efficient and staleness-bounded, but soon the author realised that any
effort in that sense would only have led again to large mini-batches, hence the
need to find another, different, approach.
The potential strategies left to be explored are the following:

1. atnode level

¢ by implementing tensor operations in back-propagation even more
efficiently;

e by developing new dedicated hardware that is better suited to
handle small mini-batches;

2. at distributed level

e by improving parallel gradient descent without falling back-on
large mini-batches;

¢ by developing a different optimisation strategy that exploits par-
allelism better than gradient descent.

Point 1 is being researched actively [84, 138] and it is clearly out of the scope
of this paper. Also the development of algorithms that departs completely
from gradient descent is an interesting topic, still this work is focused on
improving on parallel gradient descent. The solutions that is being ex-
plored in this work instead keeps all the properties of parallel SGD, but
drops the main assumption discussed above: communication completeness.

A brief revision of the worker consistency spectrum presented before
[1] is useful before delving into the details of the envisioned strategy:
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1. synchronous communication (large mini-batches)

2. complete communication with bound delay (stale-synchronous [100,
135])

3. complete communication with unbound delay (Downpour SGD [86])
4. partial communication ([4, 139, 140])

where it has been introduced a new class of algorithms that leverage incom-
plete communication topologies. This class involves a number of worker
nodes, each one hosting a model replica which performs training on lo-
cal data and exchange gradients with a proper subset (i.e. neighbours on a
given topology) of the workers set in either synchronous or asynchronous
way. They key feature of this point is that not all the gradients reach all the

workers, not even after an arbitrary delay.

<~—Vyw—>

PN

f

Vw VW Vw
A) Complete communication graph. (B) Incomplete communication graph.

FIGURE 4.2: Comparison of different communication
strategies for training. Figure (a) is typical of synchronous,
all-reduce, strategies and broadcast-based asynchronous
strategies. Parameter server-based approaches achieve the
same result by distributing weights instead of gradients, al-
though with a different topology. In this set-up all the gra-
dients produced in the workers’ graph always reach all the
other nodes, while in figure (b) the gradients are always re-
layed by other nodes, hence their effect is mediated by a
certain amount of non-linearity the effect of which is not
trivially understood.

The previous section stated that the first three points in the spectrum are
asymptotically equivalent in terms of convergence, although chapter 6 will
show that practice does not always behave as expected. It is true that a cen-
tralized set-up with a parameter server forces a degree of asynchrony since
gradient updates are queued, still this is more a limitation of the central-
ized implementation that a property of this strategy, moreover the central-
ized approach introduces an obvious communication bottleneck. Point 4
would be, instead, a significant departure from large mini-batches, poten-
tially providing beneficial effects to the convergence, while its scalability
can be expected to be almost linear in terms of samples processed per unit
of time, as it is for most of the asynchronous implementations. Moreover,
this approach would significantly benefit in loosely-coupled heterogeneous
environments (e.g. edge), where the communication is costly and unreliable.
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4.2.1 Sparse topology training theory

The previous sections of this chapter came to the conclusion that any ef-
fort to improve the efficiency and bound the delay that is typical of asyn-
chronous methods is futile, as it only gets closer to the optimisation path
of a large mini-batch, which is already quite efficient at small scale, but it
is flawed when trying to move to the HPC domain or to loosely coupled,
edge settings. Moreover, large-scale asynchronous deployments require ex-
treme and problem-specific careful to achieve convergence. Dropping the
completeness of the communication graph, and concurrently dropping the
requirement of model consistency, would represent a completely different
optimisation dynamics with respect to any approximation of large mini-
batches; this section will try to sketch some theoretical foundations and to
discuss some previous work. However, as it happens for the large mini-
batch approach, the assumptions needed to provide meaningful theoretical
results are so tight that the results are hardly applicable to real-life training
problems, shifting the focus on experimentation to validate the idea.

It is clear that allowing partial communication definitely gives up on
model consistency, even in the long run, and the effect of this concept on
the convergence must be better understood. This last issue is also strictly re-
lated to the possibility to terminate some workers at any given time without
impacting the overall convergence: this matter has been already discussed
[86], but only from the point of view of fault tolerance of the training sys-
tem, not in terms of training accuracy.

Previous efforts

Very few previous works explored this topic: Jin et al. [141], Blot et al.
[142] and, during the progress of the present work also Daily et al. [4],
all proposed some kind of training based on gossip communication [139,
143], where the weights are exchanged only between selected nodes ev-
ery time. These works takes their origin from model averaging techniques
like EASGD [117], hence they communicate weights instead of gradients,
as proposed here.

Jin et al. [141] provide a comprehensive convergence analysis based
on the same premises used in section 2.1.2, which is definitely theoretically
interesting, but hardly applies in this case because it is based on weights ex-
change instead of gradient exchange. Moreover, it can still be argued that
the subtleties of implementation can impact the results too much to make
this results directly applicable to predict training performance. Another is-
sue of this work, shared with the one from Blot et al., albeit this last one is
more limited in its scope, is that the choice of gossip partners is random,
causing potential communication imbalance and irregular diffusion of re-
sults. These pitfalls prevented the two approaches to achieve performance
and convergence at large scale.

The work from Daily et al. [4], on the other hand, presents an idea
which is closer to what envisioned in the next section, with a more struc-
tured communication topology. This work presents an interesting proof of
convergence for this approach, yet it is based on the concept of exchanging
weights instead of gradients, hence it is not useful to describe the current
scenario. Moreover, the proof postulates the convergence of all the workers
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to the same minimum, but this is not verified by experiments': this observa-
tion does not necessarily void the correctness of the proof, which is sound,
but only remarks once again how the assumptions made in order to build
a theoretical framework are hardly applicable in real problems. Finally, a
critical point in this work is given by the mini-batch exchange strategy ap-
plied between workers: while effective in the specific set-up, this idea po-
tentially limits the applicability of this approach to scenarios where work-
ers draw from the same data pool (i.e. in case of a shared file system), or at
least are allowed to exchange real data; different settings can be envisioned
where data are produced locally and may not be exchanged, either because
of technical limitations (e.g. limited bandwidth, that should be dedicated
to gradients) or because of privacy issues. On the experimental side, while
presenting interesting results compared to asynchronous approaches, there
is no clear convergence comparison with respect to a sequential implemen-
tation, which will be show to be the most challenging comparison.

The present effort hopes to present a more comprehensive theoretical
background, as well as a more detailed discussion on the implementation of
the experimental software framework. In the author’s opinion, clearer ex-
perimental results with respect to previous works are also proposed based
on what discussed in section 3.4.2.

Incomplete topologies has been also explored theoretically in generic
optimisation context [139, 144-146]; a promising direction for a rigorous
formalisation, at the time of writing, is to draw a connection between the
work done in general-purpose distributed optimisation, and deep learning,
similarly to what is done by Tatarenko et al. [146] when highlighting how
their formulation corresponds exactly to SGD as described by Robbins and
Monro [36].

A full fledged formalisation for sparse communication SGD is even more
difficult to realise than for synchronous training and it is not expected to be
very effective in describing the real-life training performance. In this sense,
this paragraph presented no claims about the theoretical performance of
this approach, the validation of which will be delegated to experimenta-
tion.

4.2.2 Nearest-Neighbours Training

Finally, this section will introduce the core contribution of this research:
Nearest-Neighbours Training (NNT) [2, 3]. As anticipated, this idea extends
the concepts of synchronous and asynchronous SGD towards the inconsis-
tent side of the consistency spectrum. This background explains the choice
of exchanging gradients instead of averaging weights, which represents the
main novelty with respect to the techniques discussed in the previous sec-
tion, that instead appear to come from a model averaging background.
Loosely speaking, exchanging gradients between individual workers
is expected to provide comparable scalability and some improvement in
convergence with respect to large mini-batches, since it retains some of
the “noisiness” of small batches, that is very beneficial in early training

IThis point has been personally confirmed by the authors.
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FIGURE 4.3: Topologies for nearest neighbours training.

stages. On the other hand, given a proper topology, this approach is also ex-
pected to reduce the average staleness of gradients with respect to parame-
ter server approaches, without the heavy communication cost of broadcast-
based asynchronous SGD. This is eventually expected to be less reliant on
problem specific tuning such as warm-up strategies and learning rate ad-
justments: with the final goal of allowing a straightforward transition from
sequential training used for research and tuning of the model itself, to dis-
tributed, large-scale production deployment.

NNT represents the practical declination of sparse communications SGD:
the idea is to arrange workers in a logical k-dimensional grid where gradi-
ents are exchanged between geometrically adjacent workers, as the name
suggests. Figure 4.3 represents this concept, with boundary effects avoided
by adopting a torus-like communication topology where the grid (or the
line, in 1D), is closed on itself by connecting the boundaries together. The
chosen topology in this case is not a negligible detail: in fact it impacts both
the amount of required communication and the distance between workers:
namely, the number of “hops” required for the information about gradients
to propagate between two arbitrary chosen worker nodes (given by the L'
distance on a k-dimensional discrete torus). For instance, this distance dif-
fer significantly if the same number of workers is arranged on a 1D ring, or
on a 2D grid, at the cost of double the communications. As a rule of thumb,
a grid topology can be a good trade-off between the amount of communi-
cation and the average distance between nodes.

In this set-up, workers perform a local update on their local data, then
they broadcast the obtained gradients to their nearest neighbours . Algo-
rithm 2 presents the simplest version of NNT training as seen from a single
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Algorithm 2 Pseudocode for an epoch of a single worker in NNT. Gradient
formulation is simplified for brevity.

1: while local_data_iterator has next mini-batch do

Compute VL(w) with local data

3 W < W — )VL(W)jocar

4 while input_channel # empty do > non-blocking poll on channel
5: W W — UVL(W)neighbour
6

7

8

end while
output_channel.send(VL(W);oca1)
: end while

node. It must be taken into account that gradients are not simply propa-
gated, but they are applied locally, and another gradient is propagated that
somehow includes the information carried by all the received gradients, in
this sense, for instance, the information produced by node 1 in figure 4.3b
reaches (with a delay) node 6 via node 2, 5, and also via different other
paths starting from nodes 4 and 9 thanks to the torus topology. Of course
in this case the impact of the original contribution of node 1 will be diluted
by the number of additional contributions received along the path.

With respect to the training dataset, for the purpose of this work it is ran-
domized and partitioned among workers at the beginning of each epoch, while in
the future will be considered cases where data is created locally and should
not be moved from the node where it resides (e.g. for privacy reasons).
The global vision of the training process is depicted by figure 4.4, where a

Data partition,

wy initialisation
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FIGURE 4.4: Typical workflow for NNT. Synchronisations
are performed at each epoch to keep bounded the variance
between the worker’s accuracy. The best worker is the one
with the highest test accuracy at the end of the given epoch.
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synchronisation step at the end of each epoch is performed in order to re-
duce the variance between the accuracy of different workers. This kind of
synchronisation has limited impact on the performance, as its granularity is
very large, and can be made larger by enforcing it every 2 or more epochs,
at the cost of larger variance.

The next chapter will detail the implementation of a software frame-
work designed to apply this approach on top of existing deep learning
tools, with performance and productivity in mind. Convergence and scala-
bility results will also be presented.
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Chapter 5

Flexible Asynchronous
Scalable Training Framework

This chapter will illustrate the second last contribution of this research ef-
fort: the FAST framework for data parallel training. The choice of develop-
ing a software tool from scratch, instead of relying on some existing imple-
mentation should be well motivated, as the risk of producing “yet another
deep learning framework” with negligible relevance compared to those in-
troduced in chapter 2 is high.

The intention of this work is not to replace or compete with current
DL frameworks, but rather to complement them providing a tool tat can
ingest existing training code with minimal modification, and run it in a dis-
tributed fashion. This approach is similar to the one followed by Horovod
[127], which integrates with exitsting frameworks to provide optimised
synchronous SGD capabilities. Still, Horovod is constrained to all-reduce,
large batch training and does not allow to easily experiment with differ-
ent strategies. An alternative would have been to leverage existing frame-
works’ facilities for distributed training, however that would have limited
the applicability of this work to code using that specific software, moreover
there is no guarantee that the available APIs would have been suitable for
the task, although the send-receive primitives provided by PyTorch could
have been suitable.

The presented approach is designed from scratch to allow the maximum
flexibility in terms of both compatible frameworks (limited only by the pro-
vided interfaces, not by any design choice) and in terms of allowed training
strategies. On the other hand, it is still a research product, and the number
of available strategies is, at the time of writing, limited to NNT.

5.1 Design

FAST is a header-only C++ template library with a minimal design: it pro-
vides facilities related training, offloading lower level tasks to specific com-
ponents. Figure 5.1 introduces the main layers that make up its stack: com-
munication, topology and training. Those components will be analysed indi-
vidually in the next sections, but it is helpful to set the context that led to
some key design choices.

This work adopted a framework design instead of a library approach:
this choice is reflected in how the training code is handled by FAST, as it is
wrapped in a “model logic” object without major modifications and with-
out exposing API calls directly to the developer. In fact, a library approach
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FIGURE 5.1: Simplified architecture of FAST. Communica-
tion is based on Libfabric [147] and GAM [148], the SPMD
machinery and the NNT topology are instead based on
GAM networks [148]. FAST itself implements the code
running on each worker node of the process network and
that have access to the original training code, wrapped in a
proper interface. FAST also provides a dedicated serialised
tensor object optimised to be transferred using GAM point-
ers, and facilities to convert framework-specific tensors to
and from this data type.

would have led to a modification of algorithm 1, adding some topology-
aware send/receive API calls in the training loop. This approach, while
equally good from thedevelper’s point of view, would have led to some
significant issues in the internal machinery of FAST, which led to the frame-
work approach.

The choice of C++ as the main development language and for the train-
ing code has been driven both by the need for a more production-oriented
tool, as well as by the availability of better low-level multithreading facili-
ties with respect to Python, that is the dominant language in the deep learn-
ing community. Nevertheless, the design of FAST allows enough flexibility
to implement specific interfaces for Python-based training.

5.2 Software components

5.2.1 Communication Layer

The communication layer is in charge of moving gradients between worker
nodes and it is required to be able to perform collective communications
among groups of nodes (neighbours) in a fully asynchronous and non-
blocking manner. This goal could have been achieved by using the newly
introduced MPI non-blocking collectives [102] and groups, however that
approach would have required to implement a significant amount of Single
Program Multiple Data (SPMD) machinery in the form of i clauses spec-
ifying the rank of the process. This machinery would have been possibly
visible to the user, affecting its capability to quickly define a topology, and
consequently impacting productivity.
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Instead, this work leveraged a solution developed within the University
of Turin Parallel Programming Group: the Global Asynchronous Memory
(GAM) programming model and its C++ implementation, the GAM run-
time [148], based on a memory space shared among a set of executors (i.e.,
a Global Address Space (GAS)). This framework is intended a the lowest
level of a stack that aims to overcome the shared-memory vs. message-
passing dichotomy by sharing the data on a distributed infrastructure, and
solving data races by means of asynchronous message-passing.

GAM

In the GAM model, a memory location is either public or private. Public
memory is accessed in a single-assignment fashion, whereas private mem-
ory is accessed exclusively by the respective owner. Therefore, GAM pro-
grams are Data Race Free (DRF) by construction. GAM provides message-
passing communication along with shared-memory primitives, by which
executors exchange capabilities over memory locations, thus overcoming
the traditional dichotomy between shared-memory and message-passing
paradigms.

The GAM runtime is a C++ template library that provides smart point-
ers to private and public memory locations, respectively private_ptr<T>
and public_ptr<T>, which reflect the same syntax and semantics of C++11
Smart Pointers (unique_ptr<T> and shared_ptr<T> respectively) [149]. At
this level GAM runtime still requires an SPMD programming model, how-
ever, this is not meant to be exposed to the user. Instead, the right approach
to leverage the capabilities of GAM is by means of GAM networks, that will
be discussed in section 5.2.2.

The key feature of GAM pointers is the fact that they can be moved
around between workers in a fully asynchronous, non-blocking manner:
passing a GAM pointer does not directly require either workers involved
in the communication to copy the referenced memory area, which can be
transferred later upon request of the recipient, without affecting the sender.

The back-end used by GAM to perform communications over the given
network interconnecting nodes is Libfabric, introduced below.

Libfabric

OFI (OpenFabrics Interfaces) is a framework focused on exporting fabric!
communication services to applications. Libfabric [150] is a core compo-
nent of OFI, that defines the user API, enabling a tight semantic link be-
tween applications and underlying fabric services. More specifically, lib-
fabric software interfaces have been co-designed with hardware providers
(the bottom layer of the stack in figure 5.2) with the goal of giving access to
different hardware for HPC users and applications.

A distinguishing feature of libfabric is that it is agnostic with respect to
the underlying hardware provider, thus allowing programmers to write ap-
plications that can exploit any supported hardware. In this setting, consid-
ering figure 5.2, the GAM runtime sits among the “libfabric-enabled mid-
dlewares”, at the same level as MPI or UPC.

!Fabric is an industry term to denote a network of interconnected devices in a tightly
coupled environment.
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FIGURE 5.2: OFI interfaces overview (from [150]).

Libfabric provides two different APIs for transferring data among net-
work nodes (the “Data Transfer Services” block on the right of figure 5.2):
Message Queues and Remote Memory Access (RMA). According to the for-
mer API, usually referred as two-sided communication, nodes communicate
via intermediate queues by means of send and receive primitives, as in any
message-passing environment. With the latter API, usually referred as one-
sided communication, nodes exchange data by accessing memory locations
from some shared space. For both APIs, libfabric enforces asynchronism by
means of user-level notifications (the “Completion Services” block in the
middle of figure 5.2), through which the user can query the runtime about
the completion of issued data transfers, for instance, to safely reuse mem-
ory involved in transfers.

In addition to asynchronous operations, libfabric focuses its support on
HPC environments through a number of design choices, described in detail
in the “High Performance Network Programming with OFI” guide [150].
GAM topologies are based on connection-less communication (“Address
Vectors” within the “Communication Services” block in figure 5.2), that tar-
gets large-scale environments by reducing the amount of memory required
to maintain large address look-up tables, thus eliminating expensive ad-
dress resolution.

The adoption of the GAM-Libfabric architecture allows FAST to operate
on top of several network infrastructures in a transparent way, without sig-
nificant performance penalties with respect to a more conventional MPI im-
plementation. Moreover, it allows a natively asynchronous, non-blocking
behaviour.

5.2.2 Topology, Processors and Communicators

This layer contains the key components used to materialise the training
topology required by NNT without exposing any SPMD machinery to the
user and, in this sense, with very limited effort required from the FAST de-
veloper.

The formal definition of GAM networks can be found in Drocco’s PhD
dissertation [148], in this section will be reported a simplified vision of the
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FIGURE 5.3: GAM network with 3 processors and 2 com-

municators arranged as a pipeline skeleton. The runtime

allows the developer to define policies within the communi-

cator, that can have multiple inputs and outputs (e.g. broad-

cast, round-robin for output channels, costant, round-robin,
and other for input channels).

topic that is sufficient for the scope of this work. A GAM network is a bi-
partite directed graph composed by 2 types of nodes processors and commu-
nicators, with edges connecting processors to communicators or vice-versa.
Figure 5.3 represents a basic GAM network arranged as a pipeline skeleton.
The communicator is aware of the topology of the network: in fact it knows
the identity of input nodes, the identity of output nodes, and the scheduling
policy to be applied to inbound and outbound GAM pointers.

The GAM network runtime is designed around generic template pro-
gramming, in fulfilment of modern C++ principles, in order to avoid any
overhead due to runtime polymorphism. GAM nets are based on the same
principles as the FastFlow parallel programmin skeleton library [151] (cf. sec-
tion 5.2.4), for this reason this runtime is referred to as GFastFlow (for
GAM-FastFlow).

GFastFlow builds an higher-level programming model on top of GAM,
thatis centred around stream parallelism. However, literature demonstrates
how stream parallelism can be fruitfully exploited to implement other mod-
els. For instance, several frameworks for high-level parallel programming,
such as OpenMP [152], FastFlow [153], and Flink [154], exploit stream par-
allelism for implementing data-parallel operations.

5.2.3 GFastFlow

GFastFlow provides three types of processor nodes: sources, filters and sinks,
that are defined by their role in terms of communications. Sources can be at-
tached only to an output communicator, on the contrary, sinks only receive
data from an input communicator. Filters, instead, are both able to receive
and send data. The typical usage of GAM networks is to create dataflow-
like Direct Acyclic Graphs (DAGs) where pointers traverse a specific path
from a source to a sink. On the other hand, the topology required by NNT
is a flat grid of peers, where there is no privileged direction for data, and
loops are common. Fortunately, GFastFlow is flexible enough to implement
this vision: for this purpose, neither sources nor sinks are needed, but only
filters. The C++ API used to define filter nodes is the following;:
template<typename InComm, typename OutComm,
typename in_t, typename out_t,

typename ProcessorLogic>
class Filter;
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where Incomm, outcomm represent the communicator nodes in the GAM net-
work graph; in_t and out_t are the GAM pointers of a specific type to be
passed to input and output communicators; ProcessorLogic in an object
with a specific structure of member functions that represents the business
logic of the application.

The class representing the business logic must show at least three pub-
lic members: svc_init, sve and svc_finalize, with proper signatures. The
first one is called upon process creation, the second one is called each time a
pointer is received by the inbound communicator, while the latter is called
upon process termination, which is handled by means of a proper termina-
tion token that is propagated along the network with a specific protocol.

Network construction

In order to build a network like the one presented in figure 5.3, the user has
to define its ProcessorLogic class of each processor in its network (note that
some processors can share the same class), then he has to create a proper
template specialisation of the filter /source/sink nodes as in listing 5.1. Fi-
nally, he may build the network as in listing 5.2.

LISTING 5.1: Specialised objects needed to build a GFast-
Flow network behaving as a pipeline (cf. figure 5.3).

1 class Sourcelogic {

2 public:
3 gff::token_t svc(gff::0neToOne &c) {
4 // Business logic
5 }
6
void svc_init () {

8 }

9 void svc_end(gff::0neToOne &c) {
10 }

11 };

12
13 typedef gff::Source<gff::0neToOne, //

14 gam: :private_ptr<int>, //

15 SourcelLogic> PipeSource;

16

17 class FilterLogic {

18 public:

19 gff::token_t svc(gam::private_ptr<int> &in, gff::0neToOne &c) {
20 // Business logic

23 void svc_init (gff::0neToOne &c) {
24 }
26 void svc_end(gff::0neToOne &c) {

27 }

28 };

30 typedef gff::Filter<gff::0neToOne, gff::0neToOne, //
31 gam: :private_ptr<int>, gam::private_ptr<float>, //
32 FilterLogic> PipeFilter;

3¢ class SinkLogic {
35 public:
36 void svc(gam::private_ptr<float> &in) {
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// Business logic

}

void svec_init () {

}

void svc_end () {
}
bi

7 typedef gff::Sink<gff::0neToOne, //

gam: :private_ptr<float>, //
SinkLogic> PipeSink;

LISTING 5.2: GFastFlow network creation and execution,
based on objects in listing 5.1.

int main(int argc, char * argv([])

{

gff::0neToOne comml, comm2;

gff::add(PipeSource (comml) ) ;
gff::add(PipeFilter (comml, comm2));
gff::add(PipeSink (comm2)) ;

gff::run();

return 0;

Listing 5.2 highlights how straightforward is to build a multiprocessing
application” with GFastFlow: in fact there is no trace of SPMD machinery
exposed to the user. In order to run multiple processes it is still needed
a proper launcher, as happens with mpirun for MPI applications, however
that will be discussed in section 5.4, as FAST provides its own specialised
launcher.

Communicator bundles

As anticipated, the NNT topology requires a slightly different take on GAM
networks: in fact it is not possible to design a similar topology with the
communicators provided by GFastFlow out of the box. The reason can be
understood by considering a ring topology: from listing 5.2 it is clear that,
in order for two nodes to be connected, the output communicator of the
first node must be identical to the input communicator of second node; this
implies that the output communicator of node 1 (OC1) in figure 5.4 must be
also the input communicator of node 0 and 2 (IC0O and IC2).

OC1 =1IC0 =1C2

However, also the output communicator of node 3 (OC3) must be equal to
IC2, and concurrently equal to IC4, but IC4 must not be the same as IC2,
since the set of their neighbours, from which they should receive gradients,

is different.
OC3=1C4 #£1C2

*Tt can be distributed or not whether multiple processes are launched on physically dif-
ferent machines.
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A feasible solution would be to use “routing nodes” that are not executing
business logic, but only redirecting pointers to the right output communi-
cator; still, this would increase significantly the complexity of the network,
possibly impacting the user productivity. It should be noted that it would
be possible to connect all the workers with plain communicators in a chain,
but that would entail a privileged direction in the network, so the gradients
will flow along that direction instead of being spread in the network. This
idea is not wrong per se, but it is not the goal of this work.

)
—e] N IR oc3 s OC4
IC1 I |C3
0\ __AA

FIGURE 5.4: Unfeasible attempt to impement ring topol-

ogy with plain communicators. Input communicator be-

low, output communicator above. It is not possible to triv-

ially implement such topology without additional nodes
that route the data between neighbours.

For this reason, GFastFlow has been extended in the context of this work
so it is now able to support what has been referred to as communicator bun-
dles. These structures present exactly the same API as normal communi-
cators, therefore they can be specified as template arguments for GFast-
Flow processors, but they contain an array of communicators. This allows
a processor to be actually connected to more than one communicator, while
keeping the complexity of the network under control.

Figure 5.5 represents a ring topology implemented with communicator
bundles, above the processors there is the output communicator bundle,
below there is the input communicator. Each bundle contains a number of
communicators equal to the number of neighbours, which is two in case of
a ring topology and 4 in case of a grid topology.

Listing 5.3 shows how to create a 2D-torus topology as shown in fig-
ure 4.3b. In FAST design this kind of topology is already provided (along
with the ring topology) to the user, so he is not required to implement the
graph of processors and communicators. Still, using wise indexing it is easy
to extend this approach to higher dimensions. Also in this case, no SPMD
mechanisms are needed to describe the topology, not even within the nodes.

LISTING 5.3: Definition of a 2D-torus grid topology for

NNT.
size_t grid_h = // user defined (>= 3)
size_t grid_w = // user defined (>= 3)
size_t workers = grid_h * grid_w;

// Define incoming communicators and outgoing comm bundles for
each node. Row major ordering.
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FIGURE 5.5: Ring topology correctly implemented with
communicator bundles. Input communicator below, out-
put communicator bundle above. The bundles CBx contain
a number of communicators that is equal to the number of

neighbours.

std::vector<std::vector<gff::NondeterminateMerge>>
incoming_channels (grid_h);

std::vector<std::vector<gff::OutBundleBroadcast<gff::
NondeterminateMerge>>> outgoing_channels (grid_h);

// Create inbound communicators

for
f

(int 1 = 0;
or

(int 3 = 0;

i++)
J++)

i < grid_h;
Jj < grid_w;

incoming_channels.at (i) .emplace_back () ;

// Create outbound communicators

for
f

(unsigned int i = 0;

or (unsigned

outgoing_channels.at

// Add neighboring channels

1 < grid_h; i++)
0; J < grid_w; j++)
(1) .emplace_back();

int j =

(i+1,3), (1-1,3), (1, 3+1), (1, 3-1)

in

torus topology.

t, down,

left;

// Wrapping boundaries to achieve torus behaviour

unsigned int up, righ
right = j + 1;

left = j - 1;

up = i + 1;

down = i - 1;

if (up == grid_h)

if (down == -1) down

if (right == grid_w)

if (left == -1) left

incoming_channels.at (down)

up =

0;

= grid_h - 1;

right = 0;

= grid_w - 1;
outgoing_channels.at (i) .at (Jj) .add_comm (
incoming_channels.at (up) .at (j));
outgoing_channels.at (i) .at (Jj) .add_comm (

.a

t(3));

outgoing_channels.at (i) .at (Jj) .add_comm (
incoming_channels.at (i) .at (right));

outgoing_channels.at (i) .at (Jj) .add_comm (
incoming_channels.at (i) .at (left));

// Create processor nodes

for
for

(unsigned int i
(unsigned int

= 0;
3 =0

i < grid_h;
; J < grid_w;

L)
J++)
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gff::add (WorkerNode (
incoming_channels.at (i) .at (j), outgoing_channels.at (i) .
at(3)));

// execute the network
gff::run();

The template type of the communicator bundles is a communicator itself,
and represents the policy of the communicators contained by the bundle.
At the bundle level, in this case it is used the policy outBundleBroadcast,
which forwards the pointer received by the processor to all the communi-
cators included in the bundle which, in turn, will apply their own policy.

5.2.4 Node-level parallelism

Up to this point it has been discussed the topology of the multiple worker
nodes that make up the NNT training network, still, there is the need to un-
derstand how to implement the inner mechanism of the individual worker
nodes.

Before tackling more training-related aspects, it is worth to introduce
the need for a sound multithreading support at node level. Despite the non-
blocking nature of GAM communications, a fair amount of latency hiding is
still required to achieve satisfying global performance figures: this of course
requires node-level concurrency. In practice, this is achieved by exploiting
parallel patterns provided by the the FastFlow library [151], introduced be-
low, and in particular the pipeline pattern.

FastFlow

FastFlow [151] is an open source programming framework for structured
parallel programming, targeting shared-memory multi-core and support-
ing the exploitation of GPU accelerators. Its efficiency stems from the op-
timized implementation of the base communication mechanisms and from
its layered design (cf. figure 5.6), based on C++ templates. FastFlow pro-
vides a set of algorithmic skeletons addressing both stream parallelism (e.g.,
farm and pipeline) and data parallelism (e.g. map, stencil, reduce), along
with their arbitrary nesting and composition [155]. Map, reduce, and sten-
cil patterns can be run on multi-cores or can be offloaded onto GPUs. In
the latter case, the user code can include GPU-specific code (i.e., CUDA
or OpenCL kernels). For instance, leveraging the farm skeleton, FastFlow
exposes a ParallelFor pattern [156], where chunks of a loop iterations are
streamed to be executed by the farm workers. Just like Intel TBB [157],
FastFlow’s parallel_for pattern uses C++11 lambda expression as a concise
way to create function objects: lambdas can “capture” the state of non-local
variables, by value or by reference, and allow functions to be syntactically
defined where and when needed.

From the performance viewpoint, one distinguishing feature at the core
of FastFlow is that it supports lock-free (fence-free) Multiple Producer Mul-
tiple Consumer (MPMC) queues [158], thus providing low overhead high
bandwidth multi-party communications on multi-core architectures for any
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FIGURE 5.6: Layered FastFlow design.
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streaming network, including cyclic graphs of threads. The key intuition un-
derlying FastFlow is to provide the programmer with fast lock-free Multi-
ple Producer Single Consumer (MPSC) queues and Single Producer Multi-
ple Consumer (SPMC) queues—that can be used in pipeline to build MPMC
queues—to support fast streaming networks.

Traditionally, MPMC queues are built as passive entities: threads con-
currently synchronize (according to some protocol) to access data; these
synchronisations are usually supported by one or more atomic operations
(e.g., Compare-And-Swap) that behave as memory fences. FastFlow design
follows a different approach: to avoid any memory fence, the synchronisa-
tions among queue readers or writers are arbitrated by an active entity (e.g.,
a thread). We call these entities Emitter (E) or Collector (C) according to their
role; they actually read an item from one or more lock-free Single Producer
Single Consumer (SPSC), queues and write onto one or more lock-free SPSC
queues. This requires a memory (pointer) copy but no atomic operations.

The advantage of this solution, in terms of performance, comes from the
higher speed of the copy operation compared with the memory fence; this
advantage is further increased by avoiding cache invalidation triggered by
fences. This behaviour also depends on the size and the memory layout of
copied data. The former point is addressed using data pointers instead of
data, ensuring that the data is not concurrently written: in many cases this
can be derived by the semantics of the skeleton that has been implemented
using MPMC queues—for example, this is guaranteed in a stateless farm as
well as many other cases.

The pipeline skeleton is composed by a number of workers connected
sequentially by lock-free SPSC queues, that model computations expressed
in stages. Formally, the pipeline behaves as the composition of the func-
tions performed by the stages on the input of the first stage. The parallel
semantics of the pipeline skeleton ensures that all the stages will be execute
in parallel, thus, neglecting transients, the pipeline is able to process several
input elements in the same time that would be required by a single element
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to go through all the stages once. the exact speedup that can be achieved by
a pipeline depends on several factors, including the load balancing between
its stages.

5.3 Training node

The training node is in charge of performing the local training of the model
replica in the data parallel NNT set-up. In this case it is identified with
a processor in a GFastFlow network based on the filter node type, as dis-
cussed in section 5.2.3. The training processor object can be defined as fol-
lowing
typedef gff::Filter<gff::NondeterminateMerge,

gff::0utBundleBroadcast<gff::NondeterminateMerge>,

gam: :public_ptr<FAST::gam_vector<float>>,

gam: :public_ptr<FAST::gam_vector<float>>,

FAST: :MXNetWorkerLogic<ModelLogic, float>>
MxNetWorker;

where the input and output data types are GAM public pointers to FAST: :
gam_vector<T>: it is a class that inherits from std: : vector<T> and that is en-
riched with facilities to be transparently transferred over a GAM network.
This data type is meant to contain gradients transferred between worker
nodes, its template type, that is specified as f10at in the MxNetWorker node
definition could be used to extend the presented approach to quantised (i.e.
with smaller precision, such as 8-bit integers) or otherwise compressed gra-
dients.

It is useful at this stage to discuss the framework used for the current
implementation of FAST. In fact, while the structure of the worker node is
common, the code to implement it is specific for the underlying framework.
In this case the choice fallen on MxNet [64]: at the beginning of the devel-
opment it was, in fact, the DL framework with the most expressive C++
API for training among the major ones. FAST provides a worker class

FAST: :MXNetWorkerLogic<ModelLogic, float>

that is specific for a model logic class using MxNet for training that will
be discussed briefly in section 5.4 (this class is provided as template argu-
ment, on the same line of what is done by the Filter class for the business
logic). Beside the worker node, the only framework-specific code required
is necessary to convert MxNet tensor objects, containing the gradients, into
a proper gam_vector, and the other way around.

5.3.1 Control flow and structure

The main task of the worker node is to preform the steps described in algo-
rithm 2. However, as already anticipated, several steps involve data trans-
fer from remote hosts, or data transformation and local copy (possibly be-
tween CPU and GPU), forcing the adoption of proper techniques to hide
these latencies, described in detail in figure 5.7. For this reason the previ-
ous section discussed the implementation of a FastFlow pipeline: in fact this
pattern is used in the worker node to hide those network IO or memory la-
tencies with actual computation. On top of this, it should be taken into ac-
count that each worker receives gradients from all the neighbours defined
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FIGURE 5.7: Detailed architecture of the FAST worker node.

by its topology (e.g. 4 in the 2D-torus case), this means that meanwhile
one worker computes its own gradients, it will receive 4 gradients from
its neighbours, causing a potential computation-communication imbalance
that might fill up the message queues between workers if not handled. To
solve this issue, the gradients received are not directly pushed forward in
the pipeline, but they are accumulated instead (cf. figure 5.7, reference (1))
until the queue between the accumulation node and the node performing
the update from remote gradient is empty.
This structure achieves a number of goals:

e Decoupling of model logic from distributed training logic

e Decoupling of node logic from topology
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e Significant performance results thanks to strongly asynchronous exe-
cution

Beside these points, it is noteworthy that the MxNet worker logic is com-
pletely unaware of the inner mechanisms of MxNet, but it is still capable
of achieving good performance results. This is relevant as Mxnet is, by it-
self, strongly asynchronous in the execution of the computation graph: this
could be leveraged by a distributed training framework integrated from
within (e.g. the built-in PS) in order to achieve even better scalability. How-
ever, this work aimed to be interoperable with different DL frameworks,
therefore it has been adopted this solution that trades some scalability in
favour of interoperability.

5.3.2 Gradients transfer

Figure 5.7 shows a serialisation and a de-serialisation block that are applied
asynchronously to outbound and inbound gradients respectively. This step
is needed as gradients are stored by MxNet in GAM a dictionary-like ob-
ject, while GAM requires data to be contiguous in memory in order to be
transferred®. This issue could be solved by either copying the gradients in
a new, contiguous, memory location, or by defining a protocol that could
exchange the elements of the MxNet gradient dictionary one by one. The
asynchronous nature of communications in FAST is not really suitable to
implement this kind of protocol, as managing the reconstruction of gradi-
ents coming from different sources in an interleaved fashion would cause
excessive overhead. On the other hand, the former solution, at the cost of an
additional copy, bears a number of advantages. First of all, when the model
is trained on the GPU, the serialisation is performed as a single operation
with the copy from device to host memory, therefore it does not add over-
head at all. Moreover, different use-case scenarios may require operations
to be applied to the outbound gradients, like quantisation and compres-
sion, or even proper serialisation (e.g. string serialisation), when dealing
with heterogeneous distributed infrastructures. These operations can be
fused with the serialisation of gradients, effectively cancelling its impact.

54 Usage

The FAST framework is currently available as a research prototype, although
quite mature, in a public repository*. This section will discuss the way a
user is expected to interact with the tool and the design principles that have
driven the development. Specific details about the code are mostly avoided,
since the development is still ongoing and some aspects may change in the
near future.

5.4.1 User model definition and compilation

The previous section anticipated that the business logic should be provided
by the user in the form of a ModelLogic class. The structure of this class is

%in this context serialisation is used loosely to identify contiguous memory allocation
4FAST git repository: https://github.com/paocloviviani/FAST
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provided in the documentation of the framework, but broadly follows the
structure presented in algorith 1. The required components are:

e An initialisation member function

It is in charge of loading the data local to the worker and to create
or load the computation graph. Moreover, the weights are initialised,
possibly based on a common initialisation file.

e A finalisation member function

It can perform user-defined actions, such as calculating the test accu-
racy.

e An SGD step member function

It performs a local optimisation step using a mini-batch extracted from
the local data partition.

o A weight update member function

It gets a pointer to an MxNet object containing the gradients and up-
dates the local model replica according to them, and to the local status
of the optimiser.

e A pointer to the gradients

Either a public data field or member function that returns the pointer
to the MxNet object containing the gradients.

e A pointer to the weights

Either a public data field or member function that returns the pointer
to the MxNet object containing the weights.

o A flag that reports termination

Either a public data field or member function that returns true if the
training is over (i.e. because the maximum number of epochs has
been reached.)

Other than these required components, the class can contain any func-
tion or data field that is necessary to the user to perform training. it should
be noted that, most of the times, including the examples provided in the
code, the class can be created by cutting and pasting segments of the se-
quential training code.

In order to compile an executable that can run distributed training, the
framework already provides source files with pre-built ring and 2D-torus
topologies. The user is only requested to pass its own header file contain-
ing the ModelLogic class as a gcc -include include flag within a Makefile
already available in FAST. A configuration file should be adjusted to the
specific paths of the dependencies: libfabric and, in this case, MxNet.

The resulting executable is ready to be launched in a distributed envi-
ronment thanks to the launcher described in the next paragraph.
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5.4.2 Execution

Any distributed application typically requires a launcher that runs the right
commands on each node of the distributed architecture. A common ex-
ample of this idea is the mpirun command provided by all the MPI imple-
mentations, that exploits Secure Shell (ssh) to execute commands on sev-
eral compute nodes. GAM itself already provides a launcher that is used
to also to set a number of environment variables required to run GAM ap-
plications. The peculiarities of FAST lead the development towards a cus-
tomised, python-based launcher, that is tailored to the needs of distributed
training workloads.

The launcher acts as a front-end, while the command specified by means
of several arguments is executed on the nodes by means of different back-
ends: MPI, Slurm?®, direct ssh, and local multiprocessing. The launcher is
named fast-submit and accepts a number of parameters: a typical way to
launch a FAST executable is the following:

$ fast-submit -1 [mpi,local,ssh,slurm] -n <number of workers> \
—-H <hostfile> <executable>

Where the option -1 is used to define the back-end launcher, -n indicates
the total number of worker nodes required, -1 points to the path of the file
containing a list of available hosts where to to run a command and, finally,
it takes the name of the executable to be launched. Note that the number of
workers specified must agree with what expected by the topology, for in-
stance, assuming an executable resnetGrid where a user model is compiled
with the FAST-provided 2D-torus topology, the command to run it on an
MPI cluster is the following;:

$ fast-submit -1 mpi -n 16 —-H /path/to/hostfile resnetGrid 4 4
Where the numbers following the executable name are arguments to the

executable itself defining the size of the grid of workers, as per listing 5.3.
In this case, a 4 x 4 grid will need the 16 workers specified in the launcher.

Shttps://slurm.schedmd.com
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Chapter 6

Evaluation

6.1 Experimental set-up

This chapter will finally assess how the discussion carried out up to this
point stands the test of the facts. The problem used to validate NNT and
FAST has been selected to be challenging enough to present reasonable
granularity, while not so large to require infeasible development-debugging-
validation cycles due to the time constraint of this dissertation. As it will
be clear later on, this choice possibly unfavourably impacted the compar-
ison between state-of-the-art distributed techniques and the presented ap-
proach, which will be investigated and improved also beyond the scope of
this work. The test case used for benchmarking is a common image clas-
sification task from literature, based on the CIFAR-10 [94] and the ResNet
model [93, 159]. The CIFAR-10 dataset consists of 60000 32x32 RGB images
in 10 classes, with 6000 images per class. There are 50000 training images
and 10000 test images. Classes and example images are shown in figure 6.1.
The CIFAR-10 dataset also appears in industry benchmarks [112, 122].
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FIGURE 6.1: Sample of the CIFAR-10 dataset, from [160].

Residual Networks (ResNet), on the other hand, are a well-known model
appeared in literature and among the top ranks in benchmarks. The specific
version used in this case is ResNet18-v2 [93], which provides good accuracy
results without the burden of models using more layers like ResNet50, or
ResNet152, which are also well-known in literature.
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6.1.1 Hardware used

While deep learning models are commonly trained and deployed using
GPUs, it is not trivial to get access to a reasonably large multi-node GPU
machine. On the other hand, it has been possible to access a 16-nodes ma-
chine for long enough to perform development and validation.

The results reported in section 6.2 are obtained on an HPC infrastruc-
ture! provided by the Competency Center on Scientific Computing (C3S) at
University of Turin [10]. To run experiments were used 16 CPU nodes
equipped with 2 Intel Xeon E5 with 12 physical cores each and 128Gb of
memory. Infiniband interconnection is available on the nodes and has been
used, although only as IP over InfiniBand (IPolb), that showed no appre-
ciable improvement with respect to the also available Ethernet.

Further experiments are being performed on a larger infrastructure”
provided by the Pawsey Supercomputing Centre in Western Australia, how-
ever their scope goes beyond this dissertation, and results are not mature
yet to be presented here.

6.1.2 Baseline

In order to provide a baseline benchmark for this implementation it is used
a C++ single node training code based on MxNet. The code is based on
examples provided by MxNet developer on the GitHub repository of the
framework®. Exactly the same code has been used to train ResNet with
NNT thanks to FAST and its capability to wrap existing code with mini-
mal modifications. Mxnet ha been compiled against Intel MKL-DNN [73]
to provide reasonable performance on CPU. Figure 6.2 shows the training
and test accuracy trend for two different batch sizes for the single-node
training.Sub-figure 6.2b highlights how larger batches are definitely more
efficient to compute, as 100 epochs take roughly half of the time to be pro-
cessed than in the case of n, = 128. On the other hand, larger batches
present a larger gap between training and test accuracy that let it be un-
derstood that generalisation performance is worse. Despite this fact, the
final result after 100 epochs is on par with the smaller batch size and it is
achieved much faster.

Configuration

MxNet C++ and Python API eventually point to the same underlying en-
gine, hence instruction can be roughly mapped 1-to-1 between the two ver-
sions. Here are briefly reported the main settings used for the training using
the Python API. The specific hyper-parameters are chosen based on MxNet
examples and literature, however the absolute test accuracy at the end of the
training is not as interesting in this scope as the relative performance of the dif-
ferent approaches, hence there is no claim of superior absolute performance
with respect to published results. All the code, including sequential C++, is
available in the FAST repository*.

!Detailed technical specifications:
https://c3s.unito.it/index.php/super—computer/super—-computer

2Speciﬁcally the Magnus machine: https://pawsey.org.au/systems/magnus/

*Mxnet repository: https://github.com/apache/incubator-mxnet

4FAST git repository: https://github.com/paoloviviani/FAST
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FIGURE 6.2: Training curves for ResNet18-v2 [93] on the
CIFAR-10 dataset [94] with MxNet and MKL-DNN [73],
capped at 100 epochs. Node specifications: 2x Xeon E5-2680

v3, 12 core 2.5Ghz, 128Gb of memory.

Data loading from CIFAR-10 files is performed as following, with min-
imal data augmentation (i.e. data shuffling, random cropping, and mirror-

ing):

train_data =

mx.

path_imgrec =

resize
data_shape
batch_size
rand_crop
rand_mirror
shuffle
pad
num_parts
part_index

io.ImageRecordIter (
"./cifar/cifarl0O_train.rec",
False,

(3, 32, 32),
batch_size,

True,

True,

True,

4!
store.num_workers,
store.rank)
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Weights initialisation and the optimiser are configured with the following
instructions:

# Initialize the parameters with Xavier initializer

net.collect_params () .initialize (mx.init.Xavier (magnitude=2), ctx=
ctx)

# Use Adam optimizer. Ask trainer to use the distributer kv store.

trainer = gluon.Trainer (net.collect_params (), "adam’, {’
learning_rate’: 0.01, ’"rescale_grad’: 1.0/ (batch_sizexstore.
num_workers), ’clip_gradient’: 10}, kvstore=store)

Note that the normalisation mentioned in theorem 1 is used here. This nor-
malisation is not used in NNT, where the gradient is only divided by the
local batch size. The computation graph of the ResNet model is directly
provided by the MxNet Python APL

6.1.3 Competitors

To provide this work a fair comparison, the choice fell on the distributed im-
plementation of MxNet, that in principle guarantees the same single-node
performance. MxNet provides synchronous and asynchronous SGD out of
the box, implemented in a centralised way and based on the ZeroMQ [131]
library for messaging. Despite the centralised implementation, the result
is highly efficient due to the knowledge of the inner working of the frame-
work and the direct access to relevant data structures that are managed in a
strongly synchronous way. This fact, coupled with the reasonable problem
granularity that leaves room for a synchronous approach to perform well,
results in a very efficient implementation that turned out to be almost im-
possible to beat with a general tool that does not make assumptions on the
underlying framework.

The FAST-based Nearest-Neighbours Training approach has been com-
pared against the sequential version, the synchronous SGD, and the asyn-
chronous SGD using the same hyper-parameter configuration. Whenever
different hyper-parameters are used, either multiple configurations are re-
ported for comparison, or only the best configuration is considered as the
most relevant.

6.1.4 Nearest-Neighbours Training

A few remarks can be made also on the peculiarities of the NNT train-
ing used in this benchmark. First of all, the training strategy is based on
figure 4.4, therefore a synchronisation is imposed every epoch to identify
the model with the best test accuracy and re-start all the replicas from its
weights. In fact both the test and the training accuracy of model replicas
have been observed to slowly drift away from each other if no synchroni-
sation is ever imposed during the training, this represents the cost of full
model inconsistency. On the other hand, enforcing a barrier at every epoch
is definitely acceptable, as the granularity is very large (e.g. several sec-
onds).

Another point to be considered is that, in order to correctly implement
a specific topology, there is a minimum number of nodes. For instance, the
ring topology requires at least 3 workers, otherwise the right neighbour and
the left neighbour will be the same. That holds for the grid topology, that
requires at least a 3-by-3 grid with 9 worker nodes: any configuration with
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less nodes will imply that a processor has two communicators pointing to
the same worker, that will receive the same updates twice.

6.2 Results

6.2.1 Time-To-Accuracy

This section will report in detail the convergence results of NNT with re-
spect to other approaches. The metric that is considered when discussing
convergence is the top-1 accuracy measured on the test dataset (namely, the
times the predicted output with highest probability is equal to the label of
the test sample).

Figure 6.3 shows the training curves for single-node SGD, state-of-the-
art MxNet implementations and NNT based on FAST for a per-node batch
size of 128 and 1024. The considered metric is the top-1 accuracy measured
on the test dataset (namely, the times the predicted output with highest
probability is equal to the label of the test sample). The training is arbitrarily
capped at 100 epochs (75 for batch size 1024), since it is sufficient to achieve
reasonable accuracy and to show relevant behaviours. For a per-node batch
size of 128, the obvious result from these figures is that the synchronous ap-
proach does not suffer at all from the generalisation issues showed by pre-
vious work, at least for this set-up. Indeed, synchronous SGD is both the
fastest to converge when counting epochs and in terms of wall clock time.
This is probably due to the fact that, despite the centralised implementa-
tion of MxNet, the knowledge of the inner working of the framework, the
direct access to relevant data structures that are managed in a strongly syn-
chronous way and the reasonable problem granularity, which leaves room
for a synchronous approach to perform well, result in a very efficient imple-
mentation that turns out to be almost impossible to beat with a general tool
that does not make assumptions on the underlying framework. The plot
in figure 6.3a, which shows the training curves with respect to the num-
ber of epochs for a per-node batch size of 128, presents a smooth conver-
gence for synchronous and sequential SGD, while NNT is slightly slower
to reach higher accuracies, struggling to go beyond 70% top-1 accuracy by
the 100 epochs threshold. The asynchronous approach is very slow to con-
verge at the beginning, but eventually catches up with the rest of the group.
Figure 6.3c considers wall-clock time instead, for the same per-node batch
size. It only reports details related to the first epochs, as the sequential
training is so slow that it is impossible to have a clear overview when rep-
resenting it entirely. Here again the advantage of synchronous SGD is clear:
no competitor can even come close to it. Nevertheless, NNT with FAST is
performing definitely better than the sequential version and, somehow not
surprisingly, it is comparable with the asynchronous method. Finally, the
asynchronous method overtakes FAST reaching higher final accuracy.

On the other hand, a per-node batch size of 1024, as shown by fig-
ure 6.3b and 6.3d, is large enough to present the first signs of the effect pre-
dicted by figure 2.5. In fact the synchronous version is much slower to con-
verge with respect to the smaller batch size, and the the asynchronous one
performs even worse. Conversely, NNT seems much less affected by the
larger batch size: for instance, while MxNet synchronous is 5 times slower
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FIGURE 6.3: Training curves for ResNet18-v2 [93] on the
CIFAR-10 dataset [94] with MxNet and MKL-DNN [73],
capped at 100 epochs. Ir denotes the learning rate used. Se-
quential version vs. 16 nodes with FAST (grid topology) vs.
16 nodes synchronous SGD. Node specifications: 2x Xeon
E5-2680 v3, 12 core 2.5Ghz, 128Gb of memory.
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to reach 60% accuracy with n, = 1024 compared to n, = 128, NNT is only
two times slower.

Discussion

The behaviour just presented should be analysed carefully. It cannot be
concealed that FAST is still no match for synchronous MxNet for this spe-
cific problem and set-up, but there is some bright side that can be inferred
by these results. First of all, the proposed approach is indeed successful
in achieving a better performance-accuracy trade-off than the sequential
implementation, as it reaches reasonably close accuracy results in much
shorter time (i.e. with a much steeper accuracy vs. time learning curve).
Moreover, it also sports a better trade-off than the asynchronous method
for small batches, and it is definitely better performing for large batches.
Finally, the gap between state-of-the-art synchronous SGD and NNT gets
smaller as the batch size gets larger: while still not conclusive, this rep-
resents a circumstantial evidence that the proposed approach is less sensitive
to larger per-node batch size than the synchronous implementation. As a conse-
quence, it is reasonable to expect that, given the same global batch size used
here (16 - 1024 = 16384) arranged on more nodes (e.g. 128 nodes with local
batches of 128 samples), the synchronous implementation should behave
exactly in the same way as it does in figures 6.3b, while NNT with FAST
should behave more like in figure 6.3c, therefore it is expected to outper-
form the synchronous SGD. Moreover, the smaller granularity and the larger
number of nodes is expected to undermine the scalability of the synchronous ver-
sion, while FAST should be much less affected.

While a formalisation for NNT convergence is lacking for now, it is pos-
sible to make some educated guesses on the reasons behind the observed
results. It is sensible to expect that the inconsistency between workers adds
a certain amount of noise to the optimisation process, given that multiple
model replicas have the capability to explore the space of w much more
than a single sequential worker. This noise can be beneficial in the initial
part of the training, where NNT shows good performance. On the contrary,
the asynchronous strategies possibly have too much noise in the first stages,
leading to worse results in terms of convergence. Conversely, in the long
term an excessive amount of variance can hinder the performance of NNT,
since it struggles to go far beyond 70% of accuracy. These observations may
suggest that a way to get the best of both worlds can be, for instance, using
NNT as a warm-up phase for large batches, whenever those are struggling
to converge early in the training process. This would allow for a much
faster warm-up than with sequential small batches.

The fact that the synchronous strategy is only marginally affected by
the larger mini-batches might be related to the specific problem selected for
validation, as this effect is confirmed by previous literature [50] for the Ima-
geNet dataset [134]. The good convergence achieved in this case somehow
hides the main issue related to synchronous SGD with large batches, while
the tight integration with MxNet, the suitable problem granularity, and the
size of the test cluster prevented the author to highlight the expected scala-
bilty issues of this approach. In this sense it is not possible to claim strong
performance advantages related to the presented work, but its relevance
is beyond doubt, as it achieves good convergence despite dropping most
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of the usual requirements of model consistency and completeness of com-
munication. Its low sensitivity to the per-node batch size cannot be over-
stated, as it supports, albeit with circumstantial evidence, the initial guess
that drove the development of NNT. Also relevant is that NNT appear to be
consistent, possibly better than what is reported for CIFAR-10 in the Gos-
sipGrad paper [4], although full results for comparison are not available for
that case.

6.2.2 Scalability

This section will deliberately ignore convergence performance, focusing on
the efficiency of the FAST runtime system. This is achieved by measuring
the time needed to run a single epoch of training, regardless of the accuracy.
An epoch is completed when the model has executed backpropagation on
the whole dataset: in the distributed case the whole network of nodes is
considered, hence an epoch is completed when each worker completes its
own fraction of the training dataset in a data parallel fashion. Figure 6.4
reports the results achieved, both in terms of time and in term of speedup.
Note that the grid topology can’t be applied for less than 9 workers in a 3x3
toroidal grid. The first thing that should be observed, is the super-linear
speedup achieved for one of the presented configurations, this result should
be taken with a grain of salt: in fact it has been observed a degradation of
the performance in the sequential implementation as the training proceeds,
actually increasing the average time per epoch for that deployment. This
effect did not manifest itself in any of the distributed versions, those have
shown much more stable performance. For instance, this degradation has
not been observed in sequential training on GPUs which is not reported
here, this means that in other set-ups results may vary. In this sense the
focus should be more on the comparison among distributed approaches
than on the absolute speedup figures.

These tests show how the MxNet implementation of asynchronous SGD
is not performing well compared to the synchronous one: in fact it clearly
suffers the small problem granularity of batch size 32, where in principle it
should have had an edge over the synchronous approach that proceeds in
a lock-step fashion on small tasks. On the other hand, the latter one is the
most efficient of the group in all the cases observed.

The performance of FAST is good in all the circumstances, even if for
large granularities (e.g. 1, = 1024) MxNet is faster. The most satisfying plot
is, however, figure 6.4b: in fact it shows how FAST catches up with MxNet
performance in case of large deployments with small batches. This is not unex-
pected, as the lock-step processing of mini-batches, and the bottleneck rep-
resented by the parameter server, are detrimental to performance. It is also
possible to not that, also unsurprisingly, the ring topology scales slightly
better than the grid topology, due to the smaller communication complex-

ity.
Discussion

FAST has been designed in order to be agnostic with respect to the under-
lying deep learning framework, this required a number of trade-offs that
could potentially impact its performance linked to the missing knowledge
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FIGURE 6.4: Scalability of the approaches under evaluation.

Super-linear speedup for figures 6.4d is due to the degrada-

tion of the sequential performance observed with the progress

of training, that raises the average time-per-epoch. That ef-

fect is not observed in distributed deployments, despite al-
most identical code.
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of the inner mechanisms of the framework. In fact, Mxnet uses a highly
asynchronous runtime system that manages the execution of the compu-
tational graph that would potentially lead to unpredictable results if an
external application tries to read MxNet tensors during the training. In
particular, the reported content of the tensor might be outdated, or incon-
sistent. The distributed runtime of MxNet is aware of these mechanisms,
and possibly exploits them to achieve top-notch performance, at least for
the synchronous case. On the other hand, FAST is forced to synchronously
wait for gradients and weighs to be written, before accessing them. This
has an impact on the efficiency of the distributed runtime: for instance, gra-
dients have to be serialised before exchange (in the sense that they must be
placed in a contiguous memory location, as opposite to string serialisation),
and de-serialised upon reception, operation that is not necessary in the case
of MxNet. However, this step that is detrimental to the performance of
CPU training, should not be so significant in case of GPU training, where
the device-to-host copy is fused with the serialisation in a single operation.

Despite these trade-offs, synchronous communications and parameter
servers unavoidably become a burden when dealing with smaller and more
frequent tasks, moving the balance from computation to communication, as
shown in figure 6.4b. This is the case where FAST, thanks to it NNT topol-
ogy, excels. Fully asynchronous, non-blocking message passing is able to
catch up with the limitations imposed by other design choices and eventu-
ally match the performance of MxNet.

To conclude, while speedup plots may suggest a large gap between
state-of-the-art MxNet and FAST, the left side of figure 6.4 shows that time
results are quite close to each other, and definitely better than sequential
times: real world training would definitely benefit from either FAST or dis-
tributed MxNet, as they both provide satisfactory performance.

6.3 Summary

It is clear from the results presented above that the outcome of this work, at
least at this stage, is twofold. This approach still lags behind optimised syn-
chronous deployments, that have the edge both on the convergence and the
scalability side in most use-cases. On the other hand, NNT implemented
with FAST is indeed able to converge, and it does it, at least initially, at a
faster rate than the sequential SGD in terms of time, despite the number
of theoretical requirements that have been given up. Moreover, it is on par
with state-of-the-art asynchronous SGD, with a definitely smoother conver-
gence profile.

The most interesting point is, however, highlighted by the corner cases
explored in this chapter: very large batches for convergence, and very small
batches for scalability. The deterioration of the convergence rate shown by
synchronous SGD for a global batch size of 16384 points towards a poten-
tial advantage of the NNT approach in case of very large scale deployments,
where synchronous methods would behave as a very large mini-batch even
with small local batch sizes, while NNT should retain the better conver-
gence properties of small batches. This also means that NNT is expected
to be less sensitive to hyper-parametrisation than synchronous SGD, as it
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does not behaving like a single huge mini-batch even in case of large de-
ployments. Of course this claim is not directly backed by data, but the pre-
vious discussion points in this direction, and this strategy deserves more
investigation.

Considering runtime efficiency, better scalability demonstrated on smaller
tasks is always a good sign: this also means that, given a proper GPU clus-
ter available, the shorter time required by GPUs to compute mini-batches
should be better tolerated by FAST than by MxNet. This coupled with the
device-host copy required to MxNet, thet is already in place for FAST due
to serialisation, sets high expectations for the application of this approach
on GPU-equipped HPC machines.

To summarise, the present work requires further investigation to better
identify its strengths when compared to mainstream algorithms, but it is
definitely promising. Moreover, distributed deep learning strategies are not
mutually exclusive: while model parallelism can be easily added on top of
data parallel training, also different distributed optimisation strategies can
be coupled to achieve globally better results faster. As already anticipated,
the good properties of NNT in the initial phases of the training could make
it a good candidate for the warm-up phase of synchronous methods, that
can kick in when a convex region is reached, in order to reach a higher final
training accuracy, that might be difficult to reach with NNT alone due to
the persistent variance brought by neighbouring workers.
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Chapter 7

Conclusion

7.1 Remarks and conclusion

At this stage, the quest for training performance at scale has been met
mostly by synchronous, large mini-batch, parallelism. Unfortunately, lit-
erature defines this strategy as heavily reliant on hyper-parameters fine-
tuning and not suitable for other platforms than conventional HPC clus-
ters and tightly coupled cloud instances. To some extent also this work
observed that pushing the global batch size too far is detrimental to the
convergence of the training. This dissertation advocates a departure from
both synchronous and conventional asynchronous training, as the latter has
been shown to be even more sensitive to hyper-parameter tuning than the
former, without providing a real advantage over synchronous strategies,
with witch it shares most of the drawbacks due to the complete communi-
cation graph.

In this regard, a training methodology with an incomplete topology for
gradient communication, based on a nearest neighbours scheme, has been
proposed. Dropping the completeness of the communication graph repre-
sents a completely different approach with respect to any approximation of
large mini-batches. Furthermore, exchanging gradients between individ-
ual workers can provide comparable scalability and some improvement in
convergence with respect to large mini-batches, especially in early training
stages. Moreover, there are practical advantages due to the limited com-
munication complexity, which can affectively applied outside the typical
cloud/HPC scenario (e.g. for training on mobile devices).

In order to evaluate the proposed strategy, the Flexible Asynchronous
Scalable Training (FAST) framework has been developed, which allows to
apply this novel communications approach to a deep learning framework
of choice, with minor modification to an already-available training code.
While still a research prototype, it is the author’s opinion that the frame-
work approach advocated by FAST, and followed also by other implemen-
tations like Horovod [127] represents the way to go. In fact, it allows the
researcher to completely decouple the phase of development of the model
from the phase of the deployment on a distributed infrastructure. Hope-
fully, a deeper theoretical investigation will also provide a strategy for dis-
tributed training that preserves the effect of the model hyper parametriza-
tion, allowing a deep learning model to be trained in parallel without the
need to, for instance, adjusting the learning rate.

By the time of presenting this work, most of the main deep learning
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tools are able to provide mostly seamless distributed training tools, how-
ever, all of them still provide only synchronous strategies (or at most PS-
based asynchronous ones), while implementing other approaches within
the boundaries of the tools themselves is a daunting task. Moreover, it can
be argued that a unified, external approach for distribution of training can
support the portability of performance among different infrastructures and
deployments.

Thanks to its implementation with FAST, the nearest neighbours train-
ing strategy implemented with FAST has been evaluated on a well known
dataset from literature, showing promising results. NNT sports steeper (ac-
curacy vs. time) learning curves compared to sequential training, which is
an interesting result alone as all the the usual properties of model consis-
tency and completeness of communication are simply dropped. Compared
to state-of-the-art implementations, however, this approach still leaves room
for improvement, but results for larger batches are encouraging and defi-
nitely supporting our initial guess. In particular it is appears to be less
sensitive to hyper-parametrisation than mainstream approaches.

The topic of distributed deep learning has demonstrated to be partic-
ularly hard because of the profound entanglement that characterises per-
formance aspects and domain specific aspects. No matter how good the
attempts are, it is very hard to completely decouple the two aspects at
the level of distributed SGD. The presented contributions move a resolute
step in this direction by providing a methodology to improve the Time-To-
Accuracy that is also less sensitive to hyper-parametrisation and fine tun-
ing. While the use case discussed in this dissertation did not show fully
conclusive evidences, the deployment of the presented strategy on large in-
frastructures with fairly small per-node batch sizes is expected to provide
significant improvements over the state of the art both in terms of raw scal-
ability and TTA.

7.2 Future work

This dissertation tried to delve as deep as possible into a broad field, try-
ing to achieve both relevant methodological and experimental results, but
research on this topic is far from over.

The first gap to be filled is theoretical: a clear formulation of the con-
vergence of NNT is lacking. Previous literature can be of help, but deep-
learning oriented works discussing incomplete communication strategies
only refer to exchanging weights, instead of gradients. A formal relation-
ship between the two approaches may be hiding in plain sight, but it has not
been investigated by this work. Some interesting contribution may come
from general-purpose distributed optimisation, where a large corpus of lit-
erature considered the case of incomplete communication graphs and un-
reliable links. This aspect is definitely worth of deeper study beyond the
scope of this dissertation.

With respect to the NNT strategy itself, work is in progress to inves-
tigate its subtleties (e.g. the degree of asynchrony in communications be-
tween neighbouring workers), so that convergence performance is not af-
fected by implementation issues. Also, a deeper understanding of its re-
sponse to hyper-parametrisation is due, that should be coupled with the
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theoretical investigation mentioned above.

For a more fair evaluation with respect to synchronous approaches, the first
step will be to apply it to a larger problem, like ImagNet: this would allow
for larger batches on many workers, without depleting an epoch after only
a couple of gradient updates, as happens with 16 workers and, for instance,
a batch of 2048 (i.e. in this case only two updates per worker can be carried
out before ending an epoch, which counts 50,000 samples). The deploy-
ment on larger, and possibly GPU-equipped infrastructures, should also
highlight the strengths of NNT in a comparison to synchronous methods
that suffer large scales and small granularities.

The FAST framework also deserves some further effort to bring it more
resolutely outside the “research prototype” realm. In particular the way
the training class should be written by the end-user may be improved, cre-
ating a proper interface, instead of just a specification. This would allow, in
principle, to link python objects from it, allowing full python training with
FAST under the hood. Performance-wise, there is the need of a review of
the thread-safety of some GAM inner mechanisms, that would allow for a
more asynchronous behaviour of the worker node. Finally, providing inter-
faces for TensorFlow and PyTorch should be the next step towards adoption
of this tool outside the author’s research group.
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ASIC Application-specific integrated circuit
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DNN Deep Neural Network
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IPoIb IP over InfiniBand

ML Machine Learning
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