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Abstract. We present some augmentations to literature Message Pass-
ing Neural Network (MPNN) architectures and benchmark their perfor-
mances against a wide range of chemically and pharmaceutically relevant
datasets. We analyse the effects of activation function for regularisation,
we propose a new graph attention mechanism, and we implement a new
edge-based memory system that should maximise the effectiveness of
hidden state usage by directing and isolating information flow around
the graph. We compare our results to the MolNet [14] benchmarking
paper results on graph-based techniques, and also investigate the effect
of method performance as a function of dataset preprocessing.
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1 Introduction

Many fields and research areas over the past decade have benefit greatly from
the rise of deep learning [3]. AI has risen in popularity notably in the pharmaceu-
tical industry, for activities such as bioactivity and physical-chemical property
prediction, de novo design, synthesis prediction and image analysis, to name
a few. The rapid growth of accessible computing power thanks to graphically-
accelerated computing, and the ever increasing quantity of available chemical
and biochemical data, have lead to a natural desire for data-hungry machine
learning techniques such as deep learning to attempt to exploit this information
to the greatest possible extent.

1.1 Graph Convolution

In Graph Convolutional Networks (GCNs), information propagates through a
given graph much like how convolutional neural networks (CNNs) treat grid
data (e.g. image data, text strings etc.). In contrast to image-data, however,
graphs have irregular local connectivity, are not necessarily shift-invariant, and
are not from a Euclidean domain (Fig.1). CNNs exploit these properties for
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their powerful performance, and to match this on graphs these problems must
be surmounted, in a manner that is invariant to the ordered representation of
the graph.
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Fig. 1. Convolutional Neural Networks operating on e.g. image data (left) have a reg-
ular Euclidean representation, with a fixed dimensionality of neighbours to each data
point (vertical, horizontal, and channel-depth). With graph based data, however, each
node can have a variable number of neighbours (irregular), and the graph can be tra-
versed in any order (isomorphic representation) without an easily-describable canonical
representation

Message-Passing Neural Networks. Graph Neural Networks began in 2005
by Gori et al. [9], and in 2013 the first Graph Convolutional Network schema
based on spectral graph theory was published by Bruna et al. [2]. Our work is
focussed on the framework presented by Google — the Message Passing Neural
Network [7], which was developed to generalize and be able to represent a selec-
tion of previously-published graph-based techniques [2,4,5,10-13]. We analyse
the performance effects of activation function (SELU)-based normalisation, and
chemically-based dataset preprocessing, and propose two new novel architectures
as extensions to the MPNN framework:

Attention MPNN (AMPNN) in which attention is performed over hidden
state vector elements, dependent on edge type, allowing weighted summation in
the message-passing function.

An Edge-Memory network, in which hidden states belong to directed edges
and can only propagate in a single direction, designed to naturally allow for
asymmetric bias and to maximise useful hidden memory information when prop-
agating a node’s neighbourhood.
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Low-Level Features from Graph Structure. Unlike traditional chemin-
formatic approaches to Machine Learning tasks, which use feature engineering,
graphs are one of the lowest-level representations of chemical structures from
which many features can be calculated directly. By directly using a chemical
structure as the starting point for deep learning, feature-engineering can be
avoided, and prior assumptions about task-specific knowledge don’t need to be
made. Instead, task-specific features are learned within the network, and derived
from the chemical structure directly. This allows for a potentially very powerful
general-purpose approach to chemical task modelling, and also presents an inter-
esting approach to the secure sharing of chemical data — the dissemination of
trained models for activity prediction in lieu of chemical data itself, without the
risk of reverse-engineering IP-sensitive structural information from e.g. chemical
fingerprints [1,6], and the ability to jointly-train models without the need to
pre-negotiate engineered features relevant to the task.

2 Method

We evaluate our networks on a selection of benchmarking datasets, referred to
as: HIV (42k compounds, classification, single-task); MUV (93k compounds,
classification, 17 tasks); Tox21 (8k compounds, classification, 12 tasks); ESOL
(1k compounds, regression, single-task); QM8 (22k compounds, regression, 12
tasks); SIDER (1.4k compounds, classification, 27-task), LIPO (4k compounds,
regression, single-task) and BBBP (2k compounds, classification, single-task).
Datasets were split and tested according to previous MolNet benchmarking [14]
and hyperparameter optimisation was performed using Bayesian Optimisation
in parallel with Local Penalisation [8].

3 Results

We present results for models trained on benchmarking datasets both as pre-
sented verbatim, referred to as Original Dataset, and with custom preprocess-
ing (Charge-Parent Missing-Data — CPMD). Results are in general on-par with
state-of-the-art, beating classification performance on the MUV dataset, and
obtaining lower error on the smaller LIPO regression set. The charge-parent
aspect of database preprocessing was found to be negligible (no performance
difference between e.g. SIDER models or single-task models, with no missing
data values), but the introduction of missing data values and a suitable masking
loss function was found to have a strong positive effect on performance on highly
sparse sets (MUV), over tripling performance relative to MolNet for the Atten-
tion, Edge and SELU networks, bringing them on-par with SVM and beating
SVM with the Edge-based approach. The charge-parent aspect of the prepro-
cessing was done to investigate how robust the model is to ionic complexes, such
as those shown in Fig.4. As the network does not model ionic bonds, it was
unknown whether disjoint graphs would interfere with the message propagation,
and ions such as sodium would act as noise in the training. However, due to the



Attention and Edge Memory Convolution for Bioactivity Prediction 755

lack of performance difference between the two sets when all data is present, it
can be assumed that the readout function safely bridges these gaps and does not
interfere with models’ performance (Figs.2 and 3).
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Fig. 2. Relative Performance of Classification (left) and Relative Error of Regression
(right) models against the best presented MolNet model, on the original datasets.
Unless otherwise stated, classification sets were evaluated using the ROC-AUC metric.
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Fig. 3. Relative Performance of Classification (left) and Relative Error of Regression
(right) models against the best presented MolNet model, on the CPMD datasets. Unless
otherwise stated, classification sets were evaluated using the ROC-AUC metric.
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Fig. 4. Examples of ionic complexes in the Original Dataset
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