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Abstract. We describe a Transformer model for a retrosynthetic reac-
tion prediction task. The model is trained on 45033 experimental reac-
tion examples extracted from USA patents. It can successfully predict
the reactants set for 42.7% of cases on the external test set. During the
training procedure, we applied different learning rate schedules and snap-
shot learning. These techniques can prevent overfitting and thus can be
a reason to get rid of internal validation dataset that is advantageous
for deep models with millions of parameters. We thoroughly investigated
different approaches to train Transformer models and found that snap-
shot learning with averaging weights on learning rates minima works
best. While decoding the model output probabilities there is a strong
influence of the temperature that improves at T = 1.3 the accuracy of
models up to 1-2%.
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1 Introduction

New chemical compounds drive technological advances in material, agricul-
tural, environmental, and medical sciences, thus, embracing all fields of scien-
tific activities which have been bringing social and economic benefits through-
out human history. Design of chemicals with predefined properties is an
arena of QSAR/QSPR (Quantitative Structure Activity/Property Relation-
ships) approaches aimed at finding correlations between molecular structures
and their desired outcomes and then applying these models to optimise activ-
ity /property of compounds.

The advent of deep learning [3,5] gave a new impulse for virtual modeling and
also opened a venue for a promising set of generative methods based on Recurrent
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Neural Networks [10], Variational Autoencoders [13], and Generative Adversar-
ial Networks trained with reinforcement learning [14,23]. These techniques are
changing the course of QSAR studies from the observation to the invention: from
a virtual screening of available compounds to direct synthesis of new candidates.
Generative models can produce big sets of promising molecules and impaired
with SMILES-based QSAR methods [18] provide a strong foundation for creat-
ing highly optimized focussed libraries, but estimation of synthetic availability of
these compounds is an open question though several approaches based on frag-
mentation [11] and machine learning [7] approaches have been developed. To
synthesize a molecule, one should have a plan of a multi-step synthesis and also
a set of available reactants. Finding an optimal combination of reactants, reac-
tions, and conditions to obtain the compound with good yield, sufficient quality,
and quantity is not a trivial task even for experts in organic chemistry. Recent
advances in the computer-aided synthesis planning are reviewed in [2,6,9].

The retrosynthetic analysis worked out by Corey [8] tries to account for all
factors while deriving the synthetic route. It iteratively decomposes the molecule
on simpler blocks till all of them become available either by purchase or by syn-
thesis described in the literature. At each step, Fig. 1, all possible disconnections
(rules) with known reactions simplify the target molecule bringing to the scene
less complex compounds. Some of them may be already available, while the oth-
ers undergo the next step of retrosynthesis decomposition. Due to the recursive
nature of the procedure, it can deal with thousands of putative compounds so
computational retrosynthetic approaches can greatly help chemists in finding
the best routes. Managing of the database of such rules is complicated and more
critical the models based on it are not ready to accommodate new reactions and
will always be outdated. Unfortunately, almost more than 60 years of developing
rule-based systems ended with no remarkable success in synthesis planning pro-
grams [28]. Another approach to tackle the problem is to use so-called template-
free methods inspired by the success of machine-translation. They don’t require
the database of templates and rules due to an inherent possibility to derive this
information during training directly from a database of organic reactions with
clearly designated roles of reactants, products, reagents, and conditions.

The analogy between machine translation and retrosynthesis is evident: each
target molecule has its predecessors from which it can be synthesized as every
meaningful sentence one can translate from source language to target one. If all
parts of a reaction are written in SMILES notation, then our source and target
sentence are composed of valid SMILES tokens as words. The main goal of the
work is to build a model which could for a given target molecule for our exam-
ple! COC(=0)clccce(—c2nedecenc3[nH]2)cl in Fig. 1 correctly predict the set of
reactants. Namely, it should predict NclecenclN.COC(=0)clceee(C(=0)0)cl
in this case.

Neural sequence-to-sequence (seq2seq) approach has been recently applied for
a direct reaction prediction task [26,27] with outstanding statistical parameters
of final models — 90.4% of accuracy on test set. Seq2seq modeling has been also

! This reaction is in the test set and it was correctly predicted by our model.
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COC(=0)c1ccec(-c2ne3ccenc3[nH]2)c Nc1ccenciN COC(=0)c1ceec(C(=0)0)ct

C(=
Fig. 1. An example of a retrosynthetic reaction: on the left side of the arrow the target
molecule is depicted, and on the right side the one possible set of reactants that can lead

to the target is shown in common chemistry-like scheme and using SMILES notation.
Here two successive amidation reactions result in cyclisation and aromatization.

tested on retrosynthesis task [21], but due to the complex nature of retrosynthesis
itself and difficulty in estimating the correct predictions of reactants?, accuracy
on the test set was moderate 37.4% but still comparable to rule-based systems
35.4%. We questioned about the possibility of improvement models for one-
step retrosynthesis utilizing modern neural network architectures and training
techniques. Applying the Transformer Model [29], together with cyclical learning
rate schedule [24], resulted in a model with accuracy 42.7%, that is >5% higher
compare to the baseline model [21].
Our main contributions are:

We show that Transformer can be efficiently used for a retrosynthesis predic-

tion task.

— We show that for this particular task there is no advantage to use a validation
dataset for early-stopping or other parameters optimization. We trained all
the parameters directly from the training dataset.

— Applying weights averaging and snapshot learning helped to train the most
precise model for one-step retrosynthesis prediction. We averaged weights on
5 successive cycles of learning rate schedule.

— Increasing the temperature while performing a beam-search procedure

improves the accuracy up to 2%.

2 Approach

2.1 Dataset

In this study we used the same dataset of reactions as in [21]. This dataset
was filtered from the USPTO database [22] originally derived from the USA
patents and contains 50 000 reactions classified into 10 reaction types [25]. The
authors [21] further preprocessed the database by splitting multiple products

2 A target molecule usually can be synthesized with different reactions starting from
different sets of reactants. The predictions of the model may be correct from organic
chemist point of view but differ from the reactant set in ground truth. This may
lead to underestimation of effectiveness of models.
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reactions into multiple single products reactions. The resulting dataset contains
40029, 5004, and 5 004 reactions for training, validation, and testing respectively.
Information about the reaction type was discarded as we aimed at building a
general model using SMILES of products and reactants only.

2.2 Model Input

The seq2seq models were developed to support machine translation where the
input is a sentence in one language, and the output is a sentence with approxi-
mately the same meaning but in another language. String nature of data implies
some tokenization procedures similar to word2vec to be used for preprocessing
the input. Most of works in cheminformatics dealing with SMILES tokenize the
input with a regexp equal or similar to [26].

token regex= "(\[["\11+1|Br?|C1?|NIOISIPIFIIIblcinlolslpl\CI\)]I
N I=1#=I\F NN\ N/ 1@l \? 1> 1\*I\$1\%L[0-91{2} | [0-91)".

Though such tokenization is more similar to way chemists think, it also has
some drawbacks that confuse network by putting forward low represented molec-
ular parts. For example, after applying this regexp to the database one can
see some not frequent moieties such as [CQQ], [CQ@@H], [S@Q], [CQ], [CQH],
[N@@-+], [se], [C—], [C14+3]. The thing in brackets according to SMILES spec-
ification can be quite a complex gathering not only the element’s name itself,
but also its isotopic value, stereochemistry configuration, the formal charge, and
the number of hydrogens®. Strictly speaking, to do tokenization right one should
also parse the content of brackets just increasing the number of possible words
in the vocabulary what eventually leads to the simplest tokenization only with
letters. We tried different schemes of tokenization in this work but did not see
any improvements in using them over simple character-based method.

Our final vocabulary has length of 66 symbols*:

chars = " “#7()+-.0123456789=0ABCDEFGHIKLMNOPRSTVXYZ [\\]
abcdefgilmnoprstuy$"

To convert a token to a dense vector we used a trainable embedding® of size
64. It is well known that training neural networks in batches is more stable,
faster, and leads to more accurate models. To facilitate batch training we also
used masks of input strings of shape (batch_size, max_length) with elements equal
to 1 for those positions where are valid SMILES symbols and 0 everywhere else.

3 We do not want to exclude stereochemistry information from our model as well as
charges and explicit hydrogens that will lead to reducing of the dataset. Moreover,
work in generative models showed excellent abilities of models to close cycles, for
example, clcc(COC)ceccl. If the model can capture such a long distance relation
why should it be cracked on much simplier substrings enclosed by brackets?

4 This vocabulary derived from the complete USPTO set and is a little bit wider than
needed for this study. But for future extending of the models it is better to fix the
input shape to the biggest possible value.

5 The encoder and the decoder share embeddings in this study.
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2.3 Transformer Model

We used a promising Transformer [29] model for this study which is a new
generation of encoder-decoder neural networks family. The architecture is suited
for exploration of the internal representation of data by deriving questions (Q)
the data could be asked for, keys for its indexed knowledge (K), and answers
written as values (V') corresponding to queries and keys. Technically these three
entities are simply matrixes learned during the network training. Multiplying
them with the input (X) gives keys (k), questions (¢q), and values (v) relevant to
a current batch. Equipped with these calculated parameters of the input the self-
attention layers transforms it pointing out to some encoding (decoding) parts
based on the attention vector.

The Transformer has wholly got rid of any recurrences or convolutional oper-
ations. To tackle distances between elements of a string a positional encoding
matrix was proposed with elements equal to the values of trigonometric functions
depending on the position in a string and also the position in the embedding
direction. Summed with learned embeddings positional encodings do their job
linking far located parts of the input together. The output of self-attention layers
is then mixed with original data, layer-wise normalized, and passed position-wise
through a couple of ordinary dense layers to go further either in next level of
self-attention layers or to a decoder as an information-rich vector representing
the input. The decoder part of Transformer resembles the encoder but has an
additional self-attention layer which corresponds to encoder’s output.

Transformer model shows the state-of-the-art results in machine translation
and reaction prediction outcomes [27]. The latter work showed that training the
Transformer on large and noisy datasets results in a model that can outperform
not only other machine models but also well qualified and experienced organic
chemists.

2.4 Model Inference

The model estimates the probability of the next symbol over the model’s vocabu-
lary given all previous symbols in the string. Technically, the Transformer model
first calculates logits, z;, and then transforms them to probabilities.

Zp = TransformeT({xl,x27x3, "'axL}y {ylay27y37 "'73/1‘71}) (1)

Here x; is the input of the models at i position; L — the length of the input
string; y; is the decoded output of the model up to position (i — 1); and z; —
logits that are to be converted to probabilities:
exp(z;/T)
%
> j—oexp(2/T)
where V' is the size of the vocabulary (66 in this work) and T stands for the
temperature® usually assigned to 1.0 in standard softmax layers. With higher 7'

(2)

qi =

5 Similar to formula of Boltzmann (Gibbs) distribution used in statistical mechanics.



822 P. Karpov et al.

the landscape of the probability distribution becomes more smooth. During the
training the model adapts its weights to better predict ¢;, so y; = ¢;.

During the inference however we have several possibilities how to convert ¢;
into y;, namely greedy and beam search. The first one picks up a symbol with
maximum probability whereas the second one at each step holds top — K (K
= beam’s size) suggestions of the model and summarises the overall likelihood
for each of K final decodings. The beam search allows better inference and the
probability landscape exploration compared to the greedy search because at a
particular step of decoding it may choose a symbol with less than maximum
probability, but the total likelihood of the result can be higher due to more
significant probabilities on the next steps.

2.5 Training Heuristics

Training a Transformer model is a challenge, and several heuristics have been
proposed [24], some of them were used in this study:

Using as Bigger Batch Size as Possible. Due to our hardware limitations we
could not set the batch size more then 647;

Increasing the learning rate at the beginning of training up to warmup steps®.
The authors of the original Transformer paper [29] used 4 000 steps for warming.
The Transformer model for reaction prediction task from [27] used 8000 steps.
We analysed different values for warmup and eventually found that 16 000 works
well with our model.

Applying Cyclic Learning Rate Schedules. This tips can generally improve any
model [17] through better loss landscape exploration with bigger learning rates
after the optimiser fell down to some local minima. For this study we used the
following scheme for learning rate calculation depending on the step:

(step) warmup + (step mod cycle), if step > cycle
u(step) =
b step, otherwise

where cycle stands for the number of steps while the learning rate is decreasing
before raising to the maximum again.

min (1.0, u(step)/warmup)

A(step) = factor x 3

(step) = f maz (u(step), warmup) 3)
where factor is just a constant. Big values of factor introduce numerical insta-
bility during training, so after several trials we set factor = 20.0. The curve for

learning rate in this study is shown in Fig. 2, plot (4, f).

" Qur first implementation of the model required a lot of memory to deal with masks
of reactants and products. Though later we improved the code we still remained this
size for consistency of the results.

8 In our implementation 1 step is equivalent to 1 batch. The number of reactions for
training is 40 029 4 5004, so one epoch is equal to 704 batches.
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Averaging weights during last steps (usually 10-20) of training or at minima of
learning rates in case of snapshop learning [16]. Also with cyclic learning rate
schedules it is possible to average weights of those models that have minimum
in losses just before increasing of the rate. Such approach leads to more stable
and plain region in loss landscapes [17].

3 Results

3.1 Learning Details and Evaluation of Models for Retrosynthesis
Prediction

For this study, we implemented The Transformer model in Tensorflow [1] library
to support its integration in our in-house programs set (https://github.com/
bigchem/retrosynthesis). All values reported are averages for three repetitive
runs. Preliminary modeling showed that the architecture with 3 layers and 8
attention heads works well for the datasets, though we tried combinations of 2,
3, 4, 5 layers with 6, 8, 10, 12 heads. So all calculations were performed with
these values fixed. The number of learnable parameters of the model is 1882 176,
embedding layer common for product and reactants has size 64.

Following the standard machine learning protocol, we trained our first models
(T1) using three datasets for training, validation, and external testing (8:1:1) as
was done in [21]. Learning curves for T1 are depicted in Fig. 2, (c) and (d) for train-
ing and validation loss, respectively, (a) shows the original learning rate schedule
developed by the authors of the Transformer but with 16 000 warmup steps. On
reaching cross-entropy loss about 0.1 on the validation dataset, it stagnates with-
out noticeable fluctuations as training loss steadily decreases. After warming up
phase the learning rate begins fading and eventually after 1 000 epochs its value
reaches 2.8 10~ ° inevitable causing to stop training because of too small updates.

During the decoding procedure, we explored the influence of the tempera-
ture parameter on the final quality of prediction and found that inferring at
higher temperatures gives better result then at T = 1. This observation simi-
larly repeated for all our models. Figure 3 shows the influence of this parameter
on the reactants prediction of the part of the training set. Clearly, at T = 1.3
the model reaches the maximum of chemically-based accuracy. This fact one can
explain that at higher temperatures the landscape of output probabilities of the
model is softer letting the beam-search procedure to find more suitable ways
during decoding. Of course, the temperature influences only relative distances
between peaks, so it does not affect the greedy search method.

If we applied the early stopping technique, the training of a model is stopped
around 200 epoch®. Effectiveness of such a model marked T1; in Table 1 resulted
in TOP-1 37.9% on the test set. If we chose the last one model obtained at 1000
epoch, then the model T1y gave us better value — 39.8%. In this case, we did not
see any need of the validation dataset and keeping in mind that our model has

9 Though we trained our models for 1000 epochs we also saved their weights after
each epoch and for imitating early stopping technique selected those weights that
correspond to minimum in validation loss function.
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almost 2 millions of parameters we decided to combine training and validation
sets and train our next models on both data, e.g., without validation. The model
T2 was trained on all data and with the same learning rate schedule as T1. The
results obtained when applying T2 to the test set are better than for T1 model
namely 41.8% vs. 39.8%, respectively.

Then we trained our model with cyclic learning rate schedule, Eq. 3, Fig. 2
(b) for better exploration of loss landscape. During training, we also saved the
character-based accuracy of the model, Fig. 2, (f). This snapshot training regime
[16] produces a set of different weights at each minimum of learning rate. Aver-
aging them is to some extent equivalent to a consensus of models but within one
model [17]. We tried different averaging regimes for T3 and found that averaging
five last cycles gives better results.

Our final T3 model outperforms [21] by 5.3% with beam search and more
critical it is also effective with greedy search 40.6%. The latter one is much faster
and consequently more suitable for virtual screening campaigns.

It worth to notice that TOP-5 accuracy reaches almost 70%. That means
the model can correctly predict reactants but sometimes scoring is wrong and
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TOP-1 is much less. We tried to improve TOP-1 scoring with internal confidence
estimation.
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Fig. 3. Dependence of the beam search on temperature. For better exploration, higher
temperatures are more useful. In this study we explored T = 1.3. Bigger values signif-
icantly worse for Top-3, and approximately the same for Top-1 and Top-5. This curve
was derived from the training dataset.

Table 1. Accuracy (%) of the models on test set when all reactants were correctly

predicted.

Model | Greedy | Top-1 | Top-3 | Top-5 | Description

Seq2Seq 374 524 |57.0 | Literature result from [21] based on
Seq2Seq architecture

T1 34.4 37.9 |57.3 |62.7 | Transformer Model trained with
validation control set (early stopping,
~200 epochs)

T1, 37.3 39.8 [59.1 |63.9 | The same as T1, but without early
stopping (1000 epochs)

T2 39.3 41.8 |61.3 |67.2 | Transformer Model trained on both
training and validation sets for 1000
epochs

T3 40.6 42.7 163.9 | 69.8 | Transformer Model trained with cyclic

learning rate schedule for 1000 epochs.

Averaging cycles 6, 7, 8, 9, and 10
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3.2 Internal Scoring

The beam search calculates the sum of negative logarithms of probabilities of
selecting a token at a particular step, and thus, this value can be a measure of
internal confidence. To check this hypothesis, we selected T3-2 model and esti-
mated its internal performance to distinguish between correct and invalid predic-
tions. The parameters of the classifier were: AUC = 0.77, optimal threshold =
0.00678. Then we validated the model with an additional condition: if the score
is less than optimal threshold we selected the answer, otherwise we went to the
next candidate in the possible reactant sets returned by the beam search. The
results were even worse than without thresholds, 28.45 vs. 42.42. A possible
explanation is that the estimation does not deal with organic chemistry. The
model tries to derive some character-based scoring relying only on tokens in a
string and increasing this value does not influence the quality of prognosis. The
same effect we saw during training when the character accuracy is 98% whereas
chemistry-based metric is much lower.
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Fig. 4. Internal classification performance.

Estimation of optimal thresholds on training sets almost always a bad idea
due to the biasing of a model to its source data. The correct way is to use vali-
dation dataset instead. We built the classifier for the T1-2 with characteristics:
AUC = 0.65, optimal threshold 0.00396, and applied it for testing the model.
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The results were again worse, 14.1% vs. 40.85%. There are no significant differ-
encies of accuracies when using unnormalized or normalized on the length of the
reactants string scores. Figure4 shows ROC curves for T1-2 and T3-2 models
derived at T = 1.3. Evidently one cannot use this estimation to improve TOP-1
scoring.

4 Discussion

Much attention paid in the scientific literature for rule-based approaches [4,28].
Since the authors of [20] have described the algorithm of automatic rule extrac-
tion from mapped reaction database several implementations of the procedure
appeared, and then widely accepted by researchers. However, it should be noticed
that, first, there is no algorithm to make atom-mapping [2] if it is absent (the
typical situation with laboratory notebooks (ELN) for example). Second, all
available information on synthesis usually contains only positive reactions, so
all binary classification accuracies are inevitable overestimated because of artifi-
cial negative sets exploited in studies. Finally, the absence of commonly accepted
dataset for testing makes the results of different groups practically disparate and
biased to those problems the authors tried to solve. The authors of [4] selected
40 molecules from DrugBank database to test their multiscale models, whereas
[21] used database specially prepared for classification [25].

Our model can correctly predict reactant set in TOP-5 with accuracy 69.8%.
Internal confidence estimation cannot guarantee a correct ordering of reactants
sets, so different scoring methods should be developed. One of the promising
ways is to use a forward reaction prediction model to estimate whether it is
possible to assemble a target molecule from reactants proposed. The scoring
model should have excellent characteristics and probably it is possible to apply
the same cycling learning rate and snapshot averaging to build it.

First work on applying reinforcement learning for the whole retrosynthetic
path [28] showed superior performance compared to the rule-based methods
developed before. More important if can deal with several steps of synthesis.
But the policy learned during the training again used extracted rules limiting
the method. Thus, the development of models for direct estimation of reactants
is still of prime importance. During the encoding process, the Transformer finds
an internal representation of a reaction which can be useful for multicomponent
QSAR [19] for predicting rate constants [12] and yields of reactions. Embed-
ding such systems in policy networks within reinforcement learning paradigm
can bring forward an entirely data-driven approach to solve challenging organic
synthesis problems.

5 Conclusions

We have described a Transformer model for retrosynthesis one-step prediction
task. Our final model trained with cyclic learning rate schedule and its weights
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were averaged during last five loss minimum. The model outperforms the pre-
vious published retrosynthetic character-based model by 5.3%. It also does not
require the extraction of specific rules, atom mappings, and reaction types in
reaction dataset. We believe it is possible to improve the model further applying
knowledge distillation method [15] for example. The current model can be used
as a building block for reinforcement learning aimed at solving complex organic
problems.
All source code and also models built are available online via github

https://github.com/bigchem /retrosynthesis
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