
Vol.:(0123456789)1 3

Journal of Computer-Aided Molecular Design (2019) 33:331–343 
https://doi.org/10.1007/s10822-019-00188-x

Multi-task generative topographic mapping in virtual screening

Arkadii Lin1,2 · Dragos Horvath1 · Gilles Marcou1 · Bernd Beck2 · Alexandre Varnek1 

Received: 15 September 2018 / Accepted: 2 February 2019 / Published online: 9 February 2019 
© Springer Nature Switzerland AG 2019

Abstract
The previously reported procedure to generate “universal” Generative Topographic Maps (GTMs) of the drug-like chemical 
space is in practice a multi-task learning process, in which both operational GTM parameters (example: map grid size) and 
hyperparameters (key example: the molecular descriptor space to be used) are being chosen by an evolutionary process in 
order to fit/select “universal” GTM manifolds. After selection (a one-time task aimed at optimizing the compromise in terms 
of neighborhood behavior compliance, over a large pool of various biological targets), for any further use the manifolds are 
ready to provide “fit-free” predictive models. Using any structure–activity set—irrespectively whether the associated target 
served at map fitting stage or not—the generation or “coloring” a property landscape enables predicting the property for 
any external molecule, with zero additional fitable parameters involved. While previous works have signaled the excellent 
behavior of such models in aggressive three-fold cross-validation assessments of their predictive power, the present work 
wished to explore their behavior in Virtual Screening (VS), here simulated on hand of external DUD ligand and decoy series 
that are fully disjoint from the ChEMBL-extracted landscape coloring sets. Beyond the rather robust results of the univer-
sal GTM manifolds in this challenge, it could be shown that the descriptor spaces selected by the evolutionary multi-task 
learner were intrinsically able to serve as an excellent support for many other VS procedures, starting from parameter-free 
similarity searching, to local (target-specific) GTM models, to parameter-rich, nonlinear Random Forest and Neural Network 
approaches.
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Abbreviations
GTM	� Generative topographic mapping
UGTM	� Universal generative topographic mapping
GA	� Genetic algorithm
CV	� Cross-validation
DUD	� Directory of Useful Decoys
NN	� Neural network
RF	� Random forest

Introduction

Generative Topographic Mapping (GTM) [1] is a dimen-
sionality reduction method corresponding to a probabilistic 
extension of Self-Organizing Maps (SOM) [2]. In order to 
project the data onto a 2D latent space, the method injects a 
2D hyperplane, called manifold, into the descriptor space, 
in which each item of the “Frame Set” (FS) spanning this 
space corresponds to a point defined by its high-dimensional 
descriptor vector. The manifold is mathematically described 
by a square grid of reference points (nodes) and a set of 
Radial Basis Functions (RBF, Gaussian functions). The 
FS items serve to “bend” the manifold in order to make it 
visit a maximum of their descriptor space positions. Using 
a gradient descent, the method tries to fit positions of the 
RBF centers, in order to maximize Gaussian function levels 
at all the FS data points. In other words, it tries to fit the 
data maximizing a LogLikelihood (LLh) value, which is a 
logarithm of a cumulated probability of a compound to be 
related to each node of the manifold [3]. When the manifold 
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is built, each compound is characterized by its LLh value 
and is described by the vector of its probabilities to “reside” 
in each node. This vector, Rnk, representing the probability 
of compound k to reside in node n is called the responsibility 
vector. Since any compound is certain to reside somewhere 
on the map, 

∑

n
R
nk

= 1,∀k . A library of several compounds 
can be described by the vector of cumulated responsibilities 
CR of its members k, CR

n
=
∑

k
R
nk

 . Given compounds of 
known property or bioactivity values, an activity/property 
Landscape can be created and visualized. This is useful 
not only for data visualization and analysis but also as a 
QSAR/QSPR model. After projecting a new compound on 
it, the class/property value can be easily predicted from the 
landscape.

Initially, GTM was tested as a tool for Quantitative 
Structure–Activity Relation (QSAR) tasks on typical struc-
ture–property sets [4, 5], where the known actives and inac-
tives of the set were used both as FS and as property set for 
coloring of the herewith fitted manifold. From this perspec-
tive, the initial descriptor space yielding the top predictive 
manifold could be freely tuned, together with the manifold 
parameters (number of nodes, number of Gaussians, Gauss-
ian width and Regularization term). The resulting GTM thus 
represents a predictive model fully dedicated to a specific 
QSPR problem, and exclusively trained on specific QSPR 
data. It is the results of a typical single-task learning process, 
like many other in Ligand-Based Virtual Screening: Deci-
sion Trees, Artificial Neural Networks (ANN), Support Vec-
tor Machine, Similarity search on binary fingerprints, etc. 
[6, 7] In addition to this list, SOM method was also tried as 
a VS technique in many studies [8–10]. For instance, it was 
used to identify several purinergic receptor agonists [10]. 
Later, SOM was compared with a Similarity search with 
data fusion, and, despite a poor predictive performance, the 
results of such comparison show that in principle SOM can 
be used as a tool for the VS tasks [8].

However, GTM was also tested successfully as a tool for 
large public chemical database (PubChem-17, ChEMBL-17 
and FDB-17) visualization and analysis [3]. In 2015, Sidorov 
et al. [11] used GTM in order to create a compound set-
independent “universal” map of Chemical Space (CS). 
The manifold and its underlying descriptor space were not 
selected with respect to any peculiar property but were 
aimed at representing the best possible consensus, ensuring a 
broad “polypharmacological competence”, i.e. ability to host 
predictive property landscapes for a maximum of diverse 
properties. Conceptually, this is a form of Multi-Task Learn-
ing (MTL): based on a generic FS randomly picked to cover 
the entire ChEMBL CS, structure–activity data from about 
100 unrelated target-specific series of ligands of known pKi 
values were used to challenge each manifold in terms of its 
ability to “host” predictive activity landscapes for each of 
these series. Selection with respect to the mean predictive 

performance over all series produced not an optimal mani-
fold dedicated to a given QSPR problem, but a best-compro-
mise manifold of optimal robustness and ability to host any 
arbitrary property landscape, all while maintaining a certain 
predictivity level. This ability was eventually validated in 
showing that it can easily distinguish active from inactive 
compounds for more than 400 ChEMBL targets (others than 
the ~ 100 used for selection). Results report an Balanced 
Accuracy (BA) higher than 0.6 for all the targets (none of 
which served for map parameter selection).

The above approach is thus related to MTL [12, 13], con-
sisting in learning the choices (descriptors, GTM grid size, 
etc.) leading to a “consensual” manifold, i.e. learning the 
choices that are generally relevant to QSPR in drug design, 
all targets confounded.

MTL is a wide-spread strategy in chemoinformatics and 
is embodied by numerous distinct approaches from the use 
of calculated properties by a previously fitted model as input 
descriptor to a higher-order model (feature nets [14], FN), 
to multiple-output multilayered ANNs [13] to strategies 
in which both ligands and targets are descriptor-encoded 
(computational chemogenomics [15–19]). Conceptually, the 
“universal” map approach is different from all the above 
and is closest related to the multiple-output multilayered 
ANNs. Manifold building conceptually matches the fitting 
of parameters of the common layers of the ANN, crystalliz-
ing the knowledge of the common features that are impor-
tant to all the learning tasks. Landscape creation by coloring 
with specific data sets, followed by prediction, matches the 
task-specific output neurons of the ANNs—with the notable 
difference that the latter may still be fine-tuned to improve 
task-specific predictability. By contrast, at given manifold, 
coloring of a landscape by projection of a property set and 
thereupon-based prediction is deterministic and parameter-
free. Thus, there is no perfect analogy between the “univer-
sal” GTM style of MTL and above-mentioned classical MTL 
methods. Unlike chemogenomics approaches, “universal” 
manifolds do not require at all any injection of informa-
tion about the considered targets, which can be of arbitrary 
diversity. While chemogenomics focusses on groups of 
related activities (i.e. for biologically related targets) “uni-
versal” manifolds were successfully hosting landscapes for 
completely unrelated chemical and biological properties, 
ranging from target-specific activities to cell- or organism-
based screen results. Learning features that are “universally” 
important in structure–activity relationships ensures, on one 
hand, the generality of “universal” GTMs (UGTMs). On the 
other, generality will unsurprisingly result in lesser predic-
tive propensity for some targets, as the inductive transfer of 
knowledge operating at manifold construction step basically 
resumes to a generic ability to span drug-relevant CS.

So far, no comparison of GTMs and—in particular—
of UGTM to other VS methods was undertaken. In order 
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to evaluate the quantitative benefits of building “univer-
sal” manifolds, their performance in VS was compared 
to—firstly—single-task “local” GTMs, dedicated to each 
biological properties, and also to state-of-art single-task 
machine learning methods, namely Similarity search and 
Similarity search with data fusion, Neural Networks (NN), 
and Random Forest (RF).

Methods

Data

For this project two public databases are used: ChEMBL 
(version 23) [20] and Directory of Useful Decoys (DUD) 
[21]. To extract the data, the previously described [11] tar-
get-specific structure–activity series extraction protocol has 
been reenacted on the later release 23 of the ChEMBL data-
base. A total of 618 human single proteins were retained, 
after “categorization” of ChEMBL-reported activity 
scores into “actives” and “inactives”, respectively. To this 
purpose, a set of activity classification rules embodied in 
scripts (available in Supplementary Material of the cited 
paper) were applied. Compounds with reported percentage 
of inhibition were considered inactive if values were below 
50%, otherwise they were ignored. If dose–response activity 
measures were available, various cutoffs ranging from low 
nanomolar to micromolar range were tried out. Compounds 
better than the threshold were labeled “active” (a minimum 
of 15 required), the ones of activity weaker that the ten-fold 
threshold value were “inactives” (at minimum 50), with in-
between molecules being ignored (in order to facilitate the 
separation problem). The actual target-specific cutoff even-
tually retained was the one ensuring a reasonable balance, 
closest to one active (or more) for four inactives (but never 
exceeding parity one active: one inactive—series having, at 
all considered cutoffs, more reported actives than inactives 
were discarded). Files (labeled Target-ChEMBLID.smi_ID_
class) reporting, for each target, the standardized SMILES 
string, compound ChEMBL ID and assigned class are now 
provided as Supplementary Material for the nine targets of 
the VS simulation, together with their corresponding DUD 
files. Equivalent data for the remaining 609 targets used in 
internal validation are available upon request.

Next, DUD data were used to extract independent, exter-
nal compound series, by focusing on the subset of ChEMBL 
targets that are also present in DUD and pruning all DUD 
compounds already encountered in the ChEMBL series. 
This often meant elimination of virtually all the actives from 
the DUD series, thus failure to obtain an external data set. 
However, in nine cases (Table 1) the DUD target-specific 
series contained sufficiently numerous original actives and 

were retained for external validation of ChEMBL-trained 
models (Table 2).

Structure standardization, assignment of activity classes 
(active vs. inactive) for structures associated to human tar-
gets, and rejection of targets with too small or too imbal-
anced structure–activity series were employed as already 
described. DUD compounds were likewise standardized, and 
their given activity class labels (active vs. inactive = decoy) 
were adopted as such. At the end, 1.5 M unique ChEMBL 
compounds and 914K DUD molecules were kept after 
curation.

Molecular descriptors

One hundred different fragmentation schemes supported 
by the ISIDA Fragmentor software, [22, 23] and gathered 
according to the experience of previous works [3, 11] were 
used as a starting pool for the search of suitable descriptor 
space. Recall that descriptor space selection is a key meta-
parameter of the evolutionary map sampling tool.

Universal (multi‑task) GTM manifolds

For technical reasons (the release of a major, faster ver-
sion of the GTM software), the already published “univer-
sal” map selection protocol has been rerun, with another 
important change with respect to the previously published 
version; the use of structure–activity class series as selec-
tion sets instead of the originally employed (less data-rich) 
structure-pKi (continuous) affinity data. Out of the 618 
ChEMBL structure–activity series, 236 were randomly 
designed as selection sets (see file “selection.targets” in the 
zipped dataset repository in Supplementary Material) for 
UGTM training (attached “external.targets” enumerates the 
remaining 382 targets not involved in selection). The FSs 
were constructed as sets of random ChEMBL samples of 
different sizes (between 8.5K and 26K compounds). Here, a 

Table 1   A list of nine DUD targets taken for the external validation

Target ID Target name

CHEMBL1827 Phosphodiesterase 5A
CHEMBL1952 Thymidylate synthase
CHEMBL251 Adenosine A2a receptor
CHEMBL260 MAP kinase p38 alpha
CHEMBL279 Vascular endothelial growth factor receptor 2
CHEMBL301 Cyclin-dependent kinase 2
CHEMBL4282 Serine/threonine-protein kinase AKT
CHEMBL4338 Purine nucleoside phosphorylase
CHEMBL4439 TGF-beta receptor type I
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Genetic Algorithm [24] was used to optimize GTM param-
eters, such as the number of nodes, the number of Gaussian 
functions (RBF), the regularization coefficient and the width 
of an RBF. In addition to the best descriptors set and the 
best GTM parameters, GA also has chosen the most suitable 
descriptors normalization scheme. At a given GTM parame-
ter set, the manifold training procedure is run in incremental 
mode [25]. The size of each block was 10,000 compounds. 
Then, for each selection set, a threefold cross-validation of 
the current manifold was performed, where landscapes are 
iteratively built based only on 2/3 of the ChEMBL set, while 

the remaining tier will be projected into the landscape and 
ranked by a probability to be active, representing the “color” 
(relative population of actives vs. inactives) in their target 
area. For technical details about the rigorous formalism to 
construct and predict with class and activity landscapes, 
please refer to our previous GTM publications. According 
to this selection criterion of mean threefold cross-validated 
BA of prediction, four best universal maps, each based on a 
different descriptor space, with the mean BA ranging within 
0.7–0.75 have been selected (Table 3). Corresponding GTM 
parameters and FS sizes are presented in Table 4.

Table 2   The datasets used for 
the screening procedure

a Compounds with dose–response affinity value below or equal to threshold (in nM) are considered active, 
while those with values exceeding the 10-fold threshold value are inactives. At intermediate activities, 
compounds are discarded from the ChEMBL set. Note that the DUD definition of “actives” does not com-
ply to the same rules—they routinely include co-crystallized ligands, irrespective of their affinities

Target ID DUD data sets ChEMBL data sets Thresholdsa

Actives Inactives Total Actives Inactives Total Ki/IC/EC50 (nM)

CHEMBL1827 170 25,334 25,504 691 824 1515 50
CHEMBL1952 63 6113 6176 124 455 579 1000
CHEMBL251 79 28,001 28,080 1303 3618 4921 100
CHEMBL260 100 32,925 33,025 1453 2567 4020 100
CHEMBL279 94 22,595 22,689 2047 4663 6710 100
CHEMBL301 189 25,675 25,864 638 2305 2943 500
CHEMBL4282 52 14,228 14,280 725 2619 3344 500
CHEMBL4338 102 6334 6436 100 111 211 50
CHEMBL4439 82 8013 8095 282 385 667 50

Table 3   The best selected descriptors sets [22]

Map Abbreviation Definition Descrip-
tor set 
size

1 IA-FF-FC-AP-2-3 Sequences of atoms with a length of two to three atoms labeled by force field type and formal charge 
flag, using all paths

987

2 IIRAB-FF-1-2 Atom-centered fragments of restricted atom and bonds of a length one to two atoms labeled by force 
field types

1029

3 IAB-PH-FC-AP-2-4 Sequences of atoms and bonds of a length two to four atoms labeled by pharmacophoric atom types and 
formal charges using all paths

779

4 IA-2-7 Sequences of atoms of a length two to seven atoms 728

Table 4   Selected GTM meta-
parameters for the four best 
chromosomes chosen by the 
genetic algorithm [24]

a The standardization schemes: 1—centering on the mean value; 2—Z-normalization (centering on the 
mean value and division by the standard deviation)

Map FS size Number of 
nodes per line

Number of 
RBF per line

Regularization 
coefficient

RBF width Normaliza-
tion schemea

1 17,000 41 23 1.122 1.1 2
2 17,000 47 29 0.018 1.6 1
3 25,500 37 19 0.017 2.1 2
4 25,500 38 19 3.55 1.9 2
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Monitored success scores

In this benchmarking study, the mean area under the 
Receiver Operating Characteristic (ROC AUC) when pre-
dicting half of the compound series based on landscapes 
colored (or models learned, for other methods—vide infra) 
on the other half is used in the internal validation proce-
dure. This further on named <AUC>1/2 criterion will be 
consistently used to compare models (except for single-
query similarity searching, where it cannot be defined—
see following subsection). The mean is taken over ten 
independent repeats of the above procedures, where split-
ting into training and kept-out compounds is fully rand-
omized. No specific care is taken to ensure that each com-
pound is strictly kept out once and only once per iteration.

Internal validation results were alternatively depicted as 
density distribution plots of the ROC AUC values over the 
training subsets (Figs. 1, 2, vide infra). For each method 
each ChEMBL target-specific set returns the ten distinct 
ROC AUC values from the randomized internal validation 
experiments described in the “Methods” section. Plotting the 
density (number of targets) in counting each target 10 times, 

into the specific bins matching each of its ROC AUC values 
achieved on the random splits (and followed by a normali-
zation of the density to compensate for multiple counts)—
would however produce one “global” histogram, with no 
information on the expected fluctuation of density bar 
heights. Estimating those error bars is however of paramount 
importance, in order to ensure that the histogram shape is 
not an artefact of the peculiar randomized choice of training/
test splits. For this specific purpose, this work proceeds to 
first generate “splitting accident-prone” histograms, consid-
ering each target-specific compound set to be represented by 
one randomly picked ROC AUC out of the 10. Depending on 
the pick, the set will be counted in a lower or higher bin, i.e. 
its localization on the X axis will reflect the intrinsic uncer-
tainly induced by the train/test splitting. Every set is counted 
exactly once—only its X-axis bin may fluctuate. Therefore, 
every such “splitting accident-prone” histogram will differ 
in shape. One thousand of these are generated, which allows 
a thorough monitoring of the expected fluctuation of bar 
heights as a consequence of splitting artefacts. Eventually, 
the plot shows the mean bar heights (which converge to the 
above-mentioned “global” histogram) with associated error 
bars (if readable—occasionally, fluctuations are too small).

Fig. 1   ROC AUC values for the selection set and rest targets: a map 1, b map 2, c map 3, d map 4
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Fig. 2   Internal validation results on 618 ChEMBL targets: single-
query Similarity search in a descriptors and b latent spaces, c UGTM, 
d local GTM, Similarity search with data fusion in e descriptors and 

f latent spaces, g NN, and h RF. Here, Desc. 1–4 correspond to the 
descriptors sets shown in the Table 3
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In actual virtual screening, the DUD series is projected 
onto the “complete” landscape generated from the entire 
ChEMBL set. To estimate the predictive performance 
of a particular map, ROC AUC (further on referred to as 
VSAUC) is computed, after ranking DUD compounds as 
above-mentioned [26].

Benchmarked models

For each of the 618 targets, single-task (local) models 
were set up in each out of four descriptors spaces chosen in 
Table 3 using the following methods:

•	 Regular (local) GTM
•	 Similarity search
•	 Similarity search with data fusion
•	 RF
•	 NN

Depending on the nature of the model, setting it up 
requires distinct protocols, involving parameter selection or 
fitting (local GTM, PF, NN) or decisions on used similarity 
scoring, etc. These aspects will be detailed in the dedicated 
paragraphs below, while the same success score monitoring 
procedure outlined above was applied to all models. The 
descriptors normalization scheme was not changed and cor-
responds to the one that is shown in Table 4.

The parameters of local GTM were not optimized, but 
were taken by default: the number of nodes is 625 (25 × 25), 
the number of Gaussian functions is 144 (12 × 12), the width 
of a Gaussian function is 2.82, the regularization coefficient 
is 1.0. To perform the experiments with NN and RF, SciKit 
Learn implementations of Multi-Layer Perceptron (MLP) 
(https​://sciki​t-learn​.org/stabl​e/modul​es/neura​l_netwo​
rks_super​vised​.html) and RandomForestClassifier (https​://
sciki​t-learn​.org/stabl​e/modul​es/ensem​ble.html#fores​t) were 
employed [26–29]. Here, the MLP parameters are taken by 
default: the number of hidden layers is 1, the number of 
the nodes in a layer is 100, the rectified linear unit function 
(relu) is used as an activation function [30], and the “adam” 
solver is used for the weights optimization [31]. Backpropa-
gation approach is applied to train the net [26–28]. In case of 
RF, an ensemble of trees is built on a random half of com-
pounds where the original ratio actives/inactives is kept. All 
the parameters are taken by the default, mentioned in SciKit 
Learn (https​://sciki​t-learn​.org/stabl​e/modul​es/ensem​ble.html 
#fores​t), where the number of trees in a forest is 10.

As a gold standard for the VS tasks, Similarity search 
and Similarity search with data fusion were chosen. Both 
these methods are based on a simple similarity principle: 
similar compounds should share similar activity. Therefore, 
the idea of similarity searching is to find compounds out of a 

screening pool which are similar to the reference point with 
a known label (i.e. active). While there are better suited cri-
teria [32, 33] to specifically monitor neighborhood behavior 
compliance, herein the generally applicable ROC AUC crite-
rion is used to score the potential predictive performance of 
the method, after ranking candidates in decreasing similarity 
order (Tanimoto scores) to the used query. Also, as an alter-
native to a simple similarity searching, similarity searching 
with data fusion is taken. Within this approach the screening 
pool is compared not to one but to N reference compounds 
(in this project the pool of reference compounds was chosen 
to embody a randomly picked 50% of all ChEMBL actives 
available for a target). To rank a candidate, the highest Tani-
moto score is taken out of the N computed values. As it 
was done earlier, in order to ensure reproducible results, 
averaging out the dependence on the randomly picked query 
compound(s), all similarity-based calculations were repeated 
10 times, and the mean ROC AUC was computed for each 
target. In single-query searches, the <AUC>s value resulted 
from 10 individual similarity ranking simulations using 10 
randomly picked active queries. With data fusion, 10-fold 
repeats of searches employing one half of the pool of actives 
generate the corresponding <AUC>1/2 criterion that will be 
directly compared with equivalent <AUC>1/2 criteria of the 
other VS methods, and the single-search <AUC>s.

Eventually, the DUD pool was screened to obtain a 
VSAUC score using only the data fusion-based strategy, i.e. 
ranked according to their Tanimoto score with respect to 
their nearest neighbor of the entire corresponding ChEMBL 
series.

In order to measure the impact of dimensionality reduc-
tion/information loss by the GTM transformation of initial 
descriptors into responsibility vectors, similarity searching 
was performed in both descriptor and GTM responsibility 
vector spaces.

Results and discussion

Internal validation of the new UGTM versions

For above-cited technical reasons, this article introduces 
new, refitted “universal” GTM manifolds using a new GTM 
software release and extended selection sets of 236 (ran-
domly picked) ChEMBL structure–activity class series 
associated to as many single protein targets. This under-
taking is completely independent of the herein presented 
VS benchmark, as it focuses on the “multi-task” learn-
ing of the optimal compromise in terms of neighborhood 
behavior compliance over a large panel of targets, and even 
though this by no means a preparation step of the actual VS, 
UGTM performance analysis must be briefly discussed here. 
First, it must not be forgotten that, out of the 618 ChEMBL 

https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/ensemble.html#forest
https://scikit-learn.org/stable/modules/ensemble.html#forest
https://scikit-learn.org/stable/modules/ensemble.html%20#forest
https://scikit-learn.org/stable/modules/ensemble.html%20#forest
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target-specific series exploited by this study, 236 have a spe-
cial status with respect to UGTMs: they served as selection 
sets for the optimal UGTM manifolds. This concerns two 
of the nine targets used in the VS simulation are included 
here (CHEMBL4439 and CHEMBL1952). By contrast, the 
remaining 382 external sets (including the other seven VS 
targets) were never used in UGTM tuning. It is thus legiti-
mate to verify whether these 236 targets are favored—better 
predicted—by UGTMs, with respect to the latter. Figure 1 
reports the distribution of “selection” versus “external” tar-
get-specific sets with respect to the internal validation ROC 
AUC values (see density distributions plots, in the Scoring 
section of methods). While the histograms show the expect-
able shift in favor of better results for the selection sets, this 
trend is very limited. Therefore, in the following analysis, no 
further distinction between selection and external ChEMBL 
sets will be done—statistics will indiscriminately refer to the 
set of 618 target-specific series. Furthermore, this observa-
tion is interesting, as it proves that MTL over ~ 200 struc-
ture–activity sets associated to fully non-related biological 
properties allows to cartograph the drug-relevant CS with 
a precision that is sufficient to ensure a same level of pre-
diction accuracy for a large number of distinct biologically 
relevant targets to date.

Last but not least, let it be noted that even for the two 
targets CHEMBL4439 and CHEMBL1952 which served at 
map selection stage, the external validation by VS is no less 
rigorous than for any other of the herein benchmarked mod-
els. Any predictive model issued from supervised learning 
uses target-related information for calibration, and then is 
challenged to predict an independent compound set—as is 
the case here (DUD molecules filtered in order to ensure 
that they do not include any ChEMBL members). For all the 
nine targets, “coloring” of UGTM manifolds with ChEMBL 
data is the prerequisite to predict the likelihood to be active 
for the external DUD compounds—this is the equivalent of 
aforementioned model “calibration”, except that it occurs in 
a deterministic and non-supervised manner—the manifold 
being already given. To resume, for two targets the injec-
tion of training information into UGTM models implies 
both manifold fitting and coloring, whilst for the seven oth-
ers it implies only non-supervised manifold coloring. In 
either case, external validation concerns independent, never 
encountered compounds.

Internal validation benchmark

Comparative internal validation results for the various meth-
ods in terms of the above-defined <AUC>½ (<AUC>S for 
single-query similarity screening) are given in Fig. 2. The 
poorest results come from single-query similarity, which 
is normal because the quantity of injected knowledge 
(one active reference) is minimal. Things are even worse 

after dimensionality reduction: moving to responsibilities 
decreases performances even more. Nevertheless, with 50% 
of the mass of known actives used to color GTM fuzzy class 
landscapes, predictivity increases dramatically over single-
query searches, and in spite of moving into the responsibility 
vector space.

Local maps are, as expected, better than universal maps. 
To begin with, they are already based on molecular descrip-
tors known—thanks to the MTL of UGTM hyperparam-
eters—to be generally pertinent choices, for a large pool 
of targets, Even though their control parameters were set to 
default values (likewise, the parameters of UGTMS being 
locked to the ones defining the best compromise neighbor-
hood behavior), the degrees of freedom controlling the 
“bending” of their manifolds are now free to adjust specifi-
cally in response to the dedicated structure–activity series. 
Local maps might presumably be improved even more if 
their hyperparameters would be optimized.

Yet, similarity with data fusion, which is comparable 
to the GTM-based approach in terms of input SAR knowl-
edge—50% of the actives—outperforms the former when 
driven in the original descriptor spaces: projection on a map 
inexorably costs in terms of information loss.

Eventually, NNs and RFs, are machine-learning 
approaches featuring a wealth of tunable parameters—unlike 
the fixed Universal and local GTM manifolds. Therefore, 
they are clearly the better performers.

In view of virtual screening of the DUD series, the 
best map for each target has been selected basing on its 
<AUC>1/2 score. The number of targets for which the best 
map/descriptors space achieves a <AUC>1/2 > 0.8 have been 
counted for each method (Fig. 3).

Fig. 3   The number of targets for which the best model over the four 
descriptor spaces returns <AUC>1/2 > 0.8. If, for a target, at least one 
of the four models of given type, based on the four descriptor spaces 
reaches this threshold, then the target will be added to the type bin: 
A—similarity search in initial space, B—similarity search in respon-
sibility space, C—UGTM, D—local GTM, E—similarity search with 
data fusion in initial space, F—similarity search with data fusion in 
responsibility space, G—NN, H—RF
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The bar chart in Fig. 3 keeps the trend seen in Fig. 1 
and demonstrates that RF and NN outperform the GTM 
approach. At the same time, local GTM demonstrates the 
ability to be used successfully for 490 targets which makes 
it comparable with Similarity search with data fusion, which 
successfully handles 555 of the targets.

Virtual screening simulation using DUD compounds

The last part of the project is devoted to the retrieval, by 
VS, of actives among DUD compounds, with the ChEMBL-
data-driven models. As it was described earlier, nine targets 
were found in common for DUD and ChEMBL (Tables 1, 
2), where the smallest series includes more than 6000 com-
pounds from DUD and more than 200 compounds from 
ChEMBL. The most data-rich target contains more than 
33,000 compounds from DUD and more than 6000 com-
pounds from ChEMBL.

Note that the DUD classification into actives and (pre-
sumably) inactive decoys is conceptually different from the 
classifications employed in the training sets. DUD actives 
may, for example, include co-crystallized ligands of high 
micromolar to millimolar potency, which are far from 
qualifying as “actives” by ChEMBL standards. This fact 
is potentially harmful for the external “prediction” perfor-
mance monitored here—yet, this class of artefacts generally 
applies to classification models, which are the last recourse 
in response to highly heterogenous affinity measures that 
cannot be directly compared unless they are converted to 
“classes” according to more or less rigorous criteria. How-
ever, relative comparison of method performances should 
still be possible—if extrapolation from ChEMBL data to 
the DUD set is successfully accomplished by at least some 
methods, failure to do so by others cannot be ascribed to 
classification artefacts. This is the case in the present work.

To screen the DUD pool, the best maps were chosen 
based on their mean ROC AUC value obtained in internal-
validation (Table 5).

In this VS simulation, the QSAR-based approaches 
were used, with the hypothesis (colored landscape, learned 
model) being based on the entire ChEMBL series of the nine 
above-mentioned targets. Single-query similarity searching 
was not considered here, as its intrinsic limitations due to the 
poverty of injected knowledge (a single active) were clear 
from internal validation results. In addition to ROC AUC, 
an Enrichment Factor (EF) within the 10% of top ranked 
compounds was added as a second criterion to estimate the 
quality of the predictions. The results of the external valida-
tion are shown in the Figs. 4 and 5.

Here, the predictive performance for the UGTM approach 
varies within 0.55 ÷ 0.9 in terms of ROC AUC and within 
0.2–6.2 in terms of the EF. Local GTMs show much bet-
ter performance (ROC AUC ranges within 0.75–0.9, EF 
ranges within 2.2–8.2). While NNs were on par with RF 
and outperformed GTM models in terms of internal valida-
tion results, it appears that they are no longer systematically 
among top performers in VS, where similarity searching, 
RF and local GTM models are often much more robust. The 
activity landscapes and the DUD projections done for the 
target CHEMBL4282 and presented in Fig. 6 show that most 
of the DUD compounds are within the occupied zones (in 
other words, within the GTM applicability domain).

It is also seen from the DUD and ChEMBL activity land-
scapes that active DUD compounds are projected onto active 
zones of ChEMBL, which makes the ROC AUC and EF 
very high.

Discussion

The construction procedure of “universal” maps supporting 
multiple predictive landscapes on a same GTM manifold 
is a novel strategy in MTL. It is atypical in several aspects:

•	 First, it includes both operational parameters of the GTM 
model and hyperparameters. The key hyperparameter 
here is the choice of the molecular descriptor space, 

Table 5   ROC AUC values and 
corresponding descriptors space 
for the best models computed 
within the internal validation

a Mean ROC AUC/No. of a map/descriptors space corresponded to Table 3

Target ID UGTM Local GTM Similarity search 
in initial space

Similarity search 
in latent space

NN RF

CHEMBL1827 0.89/4a 0.88/2 0.92/2 0.82/4 0.97/1 0.97/1
CHEMBL1952 0.88/4 0.84/4 0.85/4 0.76/4 0.92/1 0.92/3
CHEMBL251 0.84/3 0.84/2 0.91/2 0.81/3 0.95/2 0.96/3
CHEMBL260 0.76/2 0.77/2 0.9/3 0.81/3 0.95/3 0.95/1
CHEMBL279 0.74/2 0.71/3 0.89/3 0.76/3 0.93/3 0.93/4
CHEMBL301 0.82/4 0.83/4 0.91/2 0.8/3 0.94/2 0.95/3
CHEMBL4282 0.83/3 0.88/2 0.94/2 0.83/3 0.96/2 0.96/2
CHEMBL4338 0.83/1 0.86/3 0.85/3 0.78/3 0.94/2 0.93/2
CHEMBL4439 0.88/2 0.9/2 0.89/2 0.87/3 0.94/2 0.94/3
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allowing the procedure to select those descriptor spaces 
which remain neighborhood behavior-compliant after 
GTM-driven dimensionality reduction

•	 Second, its multi-task nature is given by the construction 
of a common manifold, which is, per se, an unsupervised 
learning process aimed at maximizing the coverage of 
FS compounds by this manifold. This common manifold 
is challenged to host fuzzy classification landscapes for 
many different biological targets. Each of them is a clas-
sical single-task model for the property associated to the 
ligands that were used to color the specific landscape. 
However, since these landscape-based predictive mod-
els do not feature any specific fitable parameters, their 
quality can be regarded as an intrinsic property of the 
underlying common manifold. Creation of the manifold 
implicitly provides access to as many landscape-driven 
predictive models as available property-annotated ligand 
series. The MTL—here primarily consisting in selecting 
optimally suited descriptor spaces and optimally asso-
ciated GTM grid size, manifold flexibility parameters, 
etc.—was directed by the goal of discovering (hyper) 
parameter combinations maximizing the mean quality of 

236 distinct “selection” series of target-specific activity-
annotated ligands

•	 Third, it does not focus on specific transfer of knowledge 
within biologically related targets, such as is the case in 
computational chemogenomics. This MTL simultane-
ously addressed the rather exhaustive set of all human 
protein targets with sufficient activity annotations in 
ChEMBL, all protein families confounded. Neither 
the 236 “selection” series of target-specific activity-
annotated ligands, nor the remaining 382 series used 
for external validation (with comparable success rate 
to the former 236) include any intended family-specific 
bias in terms of biological targets. Here, MTL would 
not target typical questions like “What are the common 
features of kinase binders?”, but more general “What are 
the common features of bioactive molecules, all targets 
confounded?”

Uncovering the few ISIDA fragmentation schemes that 
are optimally suited for this endeavor is a first key result 
of this atypical multitask learning setup. Since descriptor 
spaces cannot host predictive GTM models unless they are, 

Fig. 4   The comparison of 
the VS methods, where each 
column corresponds to the best 
map in terms of its ROC AUC 
value computed in the internal 
validation (see Table 5)

Fig. 5   The EF for different VS 
approaches where the EF value 
is given for the map with the 
highest ROC AUC value com-
puted in the internal validation 
(see Table 5)



341Journal of Computer-Aided Molecular Design (2019) 33:331–343	

1 3

per se, neighborhood behavior-compliant, it is unsurprising 
to observe that all the alternative approaches—from data-
fusion-driven similarity searching to target-dedicated local 
GTM, RF and NN models—were rather successful, both in 
terms of internal validation and external VS. There was no 
need to rescan, for each predictive method, the entire set of 
available molecular descriptor spaces—the choices of the 
evolutionary UGTM builder were appropriate. Note that the 
100 different descriptor spaces out of which the four herein 
used were selected have themselves emerged as a histori-
cal accumulation of descriptor spaces that were used in the 
past [3, 11], on rather unrelated problems such as library 
comparison, and were seen to be successful. In this sense, 
if we declare all the cases in which knowledge from pre-
vious experiences is actively used to restrain the scope of 
effectively considered working hypotheses as some form of 
“multi task” learning, then MTL is rather the rule than the 
exception in chemoinformatics.

UGTM models are remarkably robust in VS—for 
models with zero adjustable parameters, albeit they are 

systematically outperformed—in particular with respect 
to enrichment of the top selection—by the equally param-
eter-free data-fusion similarity searching, not affected by 
information loss upon dimensionality reduction. However, 
UGTM models are specifically failing to rank a significant 
number of actives among the top 100 candidates—they are 
not effective in ensuring high EF values in VS. By contrast, 
their global ROC AUC scores show that they do, overall, 
manage to eventually rank actives ahead of most of the inac-
tives, only slightly less effective than the other methods—
without systematically placing actives at the top of the list.

Responsibility vectors are still maintaining some degree 
of neighborhood behavior-compliance, but their use in 
similarity searching is not recommended, as landscape-
driven prediction on UGTM manifolds is the more power-
ful method. Note that data fusion-based similarity screening 
with Q actives being used as queries would scale like QxN 
in terms of computational effort required to virtually screen 
a database on N candidates. By contrast, landscape-based 
prediction effort is simply proportional to N and does not 

Fig. 6   Fuzzy class landscape representations of the (ChEMBL and respectively DUD) sets associated to target CHEMBL4282 on universal map 
3 (left) versus the local GTM (right)
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depend on the training set size used to create the predictive 
landscape. Thus, the latter would become computationally 
more interesting after a given Q value—not to mention all 
the benefits stemming from intuitive visualization provided 
by the GTM approach.

Conclusions

The previously reported strategy to generate “universal” 
maps, able to support predictive models for a broad spectrum 
of biological activities represents a generic MTL approach, 
where optimal molecular descriptors are selected alongside 
with optimal operational parameters of the GTM algorithm. 
A first important outcome of the approach is uncovering 
“multicompetent” molecular descriptor spaces that remain 
neighborhood behavior-compliant even after the dimension-
ality reduction process—leading to GTM responsibility vec-
tors and ultimately to a (x, y) point in 2D GTM latent space. 
These tend to correspond to ISIDA fragmentation schemes 
restricted to rather small fragment sizes but incorporating 
information-rich atom labels such as pH-dependent phar-
macophore types or CVFF force field types.

It could be shown that descriptors herewith selected are 
not only an excellent support for GTMs, but also for many 
other predictive models—starting with plain similarity 
screening. In this sense, all models here implicitly benefit-
ted from the initial MTL, which provided a pool of four 
descriptor spaces that turned out to be highly relevant for 
all the envisaged QSAR model building procedures for more 
than 600 completely independent targets.

Tanimoto-score-based similarity screening (using a data 
fusion scenario, thus ensuring that the amount of informa-
tion injected into it—active examples—matches the sizes of 
the training sets used by other approaches) is actually more 
successful than UGTM-driven predictions, as information 
loss upon dimensionality reduction is unavoidable.

Local GTMs, where manifolds are allowed to focus on 
the chemical subspace populated by a single target-specific 
ligand series, are unsurprisingly better performers than their 
universal, consensus-oriented counterparts. Note, however, 
that the latter would always represent a better choice when-
ever the activity-annotated data set pertaining to a target of 
interest is not sufficient to support the fitting of local maps. 
The same holds true for parameter-rich non-linear RF and 
NN models.
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