Conference paper Open Access

A Weighted Late Fusion Framework for Recognizing Human Activity from Wearable Sensors

Athina Tsanousa; Georgios Meditskos; Stefanos Vrochidis; Ioannis Kompatsiaris


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/db390d0b-147b-4fa8-9b8c-155e731d20ea/A%20weighted%20late%20fusion%20framework_final.pdf"
      }, 
      "checksum": "md5:a72eded930c6a711abc5bfe1d9d0a84c", 
      "bucket": "db390d0b-147b-4fa8-9b8c-155e731d20ea", 
      "key": "A weighted late fusion framework_final.pdf", 
      "type": "pdf", 
      "size": 210858
    }
  ], 
  "owners": [
    80382
  ], 
  "doi": "10.5281/zenodo.3507004", 
  "stats": {
    "version_unique_downloads": 176.0, 
    "unique_views": 31.0, 
    "views": 32.0, 
    "version_views": 32.0, 
    "unique_downloads": 176.0, 
    "version_unique_views": 31.0, 
    "volume": 38797872.0, 
    "version_downloads": 184.0, 
    "downloads": 184.0, 
    "version_volume": 38797872.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3507004", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3507003", 
    "bucket": "https://zenodo.org/api/files/db390d0b-147b-4fa8-9b8c-155e731d20ea", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3507003.svg", 
    "html": "https://zenodo.org/record/3507004", 
    "latest_html": "https://zenodo.org/record/3507004", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3507004.svg", 
    "latest": "https://zenodo.org/api/records/3507004"
  }, 
  "conceptdoi": "10.5281/zenodo.3507003", 
  "created": "2019-10-18T13:19:15.026204+00:00", 
  "updated": "2020-01-20T17:04:39.849546+00:00", 
  "conceptrecid": "3507003", 
  "revision": 4, 
  "id": 3507004, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3507004", 
    "description": "<p>Following the technological advancement and the<br>\nconstantly emerging assisted living applications, sensor-based activity<br>\nrecognition research receives great attention. Until recently,<br>\nthe majority of relevant research involved extracting knowledge<br>\nout of single modalities, however, when individual sensors performances<br>\nare not satisfactory, combining information from multiple<br>\nsensors can be of use and improve the activity recognition rate.<br>\nEarly and late fusion classifier strategies are usually employed<br>\nto successfully merge multiple sensors. This paper proposes a<br>\nnovel framework for combining accelerometers and gyroscopes<br>\nat decision level, in order to recognize human activity. More<br>\nspecifically, we propose a weighted late fusion framework that<br>\nutilizes the detection rate of a classifier. Furthermore, we propose<br>\nthe modification of an already existing class-based weighted late<br>\nfusion framework. Experimental results on a publicly available<br>\nand widely used dataset demonstrated that the combination of<br>\naccelerometer and gyroscope under the proposed frameworks<br>\nimproves the classification performance.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "A Weighted Late Fusion Framework for Recognizing Human Activity from Wearable Sensors", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3507003"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3507004"
          }
        }
      ]
    }, 
    "publication_date": "2019-07-15", 
    "creators": [
      {
        "affiliation": "Information Technologies Institute, CERTH, Thessaloniki, Hellas", 
        "name": "Athina Tsanousa"
      }, 
      {
        "affiliation": "Information Technologies Institute, CERTH, Thessaloniki, Hellas", 
        "name": "Georgios Meditskos"
      }, 
      {
        "affiliation": "Information Technologies Institute, CERTH, Thessaloniki, Hellas", 
        "name": "Stefanos Vrochidis"
      }, 
      {
        "affiliation": "Information Technologies Institute, CERTH, Thessaloniki, Hellas", 
        "name": "Ioannis Kompatsiaris"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3507003", 
        "relation": "isVersionOf"
      }
    ]
  }
}
32
184
views
downloads
All versions This version
Views 3232
Downloads 184184
Data volume 38.8 MB38.8 MB
Unique views 3131
Unique downloads 176176

Share

Cite as