Journal article Open Access

Oil Spill Identification from Satellite Images Using Deep Neural Networks

Marios Krestenitis; Georgios Orfanidis; Konstantinos Ioannidis; Konstantinos Avgerinakis; Stefanos Vrochidis; Ioannis Kompatsiaris


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-07-26</subfield>
  </datafield>
  <controlfield tag="005">20200120171402.0</controlfield>
  <controlfield tag="001">3497086</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3497086</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Oil spill is considered one of the main threats to marine and coastal environments. Efficient monitoring and early identification of oil slicks are vital for the corresponding authorities to react expediently, confine the environmental pollution and avoid further damage. Synthetic aperture radar (SAR) sensors are commonly used for this objective due to their capability for operating efficiently regardless of the weather and illumination conditions. Black spots probably related to oil spills can be clearly captured by SAR sensors, yet their discrimination from look-alikes poses a challenging objective. A variety of different methods have been proposed to automatically detect and classify these dark spots. Most of them employ custom-made datasets posing results as non-comparable. Moreover, in most cases, a single label is assigned to the entire SAR image resulting in a difficulties when manipulating complex scenarios or extracting further information from the depicted content. To overcome these limitations, semantic segmentation with deep convolutional neural networks (DCNNs) is proposed as an efficient approach. Moreover, a publicly available SAR image dataset is introduced, aiming to consist a benchmark for future oil spill detection methods. The presented dataset is employed to review the performance of well-known DCNN segmentation models in the specific task. DeepLabv3+ presented the best performance, in terms of test set accuracy and related inference time. Furthermore, the complex nature of the specific problem, especially due to the challenging task of discriminating oil spills and look-alikes is discussed and illustrated, utilizing the introduced dataset. Results imply that DCNN segmentation models, trained and evaluated on the provided dataset, can be utilized to implement efficient oil spill detectors. Current work is expected to contribute significantly to the future research activity regarding oil spill identification and SAR image processing.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Harilaou-Thermi, 57001 Thessaloniki, Greece</subfield>
    <subfield code="a">Georgios Orfanidis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Harilaou-Thermi, 57001 Thessaloniki, Greece</subfield>
    <subfield code="a">Konstantinos Ioannidis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Harilaou-Thermi, 57001 Thessaloniki, Greece</subfield>
    <subfield code="a">Konstantinos Avgerinakis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Harilaou-Thermi, 57001 Thessaloniki, Greece</subfield>
    <subfield code="a">Stefanos Vrochidis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Harilaou-Thermi, 57001 Thessaloniki, Greece</subfield>
    <subfield code="a">Ioannis Kompatsiaris</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">6914227</subfield>
    <subfield code="z">md5:4cecb52831da73ae8feb8e492bd4a803</subfield>
    <subfield code="u">https://zenodo.org/record/3497086/files/Oil_Spill_Identification_from_Satellite_Images_Using_Deep_Neural_Networks__proofreading.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Harilaou-Thermi, 57001 Thessaloniki, Greece</subfield>
    <subfield code="a">Marios Krestenitis</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">oil spill detection</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">SAR imagery</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">deep convolutional neural networks</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">semantic image segmentation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">remote sensing</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.3390/rs11151762</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Oil Spill Identification from Satellite Images Using Deep Neural Networks</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">776019</subfield>
    <subfield code="a">EOPEN: opEn interOperable Platform for unified access and analysis of Earth observatioN data</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">740593</subfield>
    <subfield code="a">autonomous swarm of heterogeneous RObots for BORDER surveillance</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
424
302
views
downloads
Views 424
Downloads 302
Data volume 2.1 GB
Unique views 391
Unique downloads 279

Share

Cite as