Journal article Open Access

Inception Mechanisms of Tunneling Nanotubes

Mitja Drab; David Stopar; Veronika Kralj-Iglič; Aleš Iglič

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <controlfield tag="005">20200120172105.0</controlfield>
  <controlfield tag="001">3491878</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">David Stopar</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Veronika Kralj-Iglič</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Aleš Iglič</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">6071651</subfield>
    <subfield code="z">md5:639418f0f840e3db3c272fd170e78170</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-05-16</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Mitja Drab</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Inception Mechanisms of Tunneling Nanotubes</subfield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">801338</subfield>
    <subfield code="a">Extracellular vesicles from a natural source for tailor-made nanomaterials</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Tunneling nanotubes (TNTs) are thin membranous tubes that interconnect cells, representing a novel route of cell-to-cell communication and spreading of pathogens. TNTs form between many cell types, yet their inception mechanisms remain elusive. We review in this study general concepts related to the formation and stability of membranous tubular structures with a focus on a deviatoric elasticity model of membrane nanodomains. We review experimental evidence that tubular structures initiate from local membrane bending facilitated by laterally distributed proteins or anisotropic membrane nanodomains. We further discuss the numerical results of several theoretical and simulation models of nanodomain segregation suggesting the mechanisms of TNT inception and stability. We discuss the coupling of nanodomain segregation with the action of protruding cytoskeletal forces, which are mostly provided in eukaryotic cells by the polymerization of f-actin, and review recent inception mechanisms of TNTs in relation to motor proteins&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3491877</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3491878</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
All versions This version
Views 7475
Downloads 5050
Data volume 303.6 MB303.6 MB
Unique views 6869
Unique downloads 5050


Cite as