Working paper Open Access

Visual and audio analysis of movies video for emotion detection@ Emotional Impact of Movies task MediaEval 2018

Batziou Elissavet; Michail Emmanouil; Avgerinakis Konstantinos; Vrochidis Stefanos; Patras Ioannis; Kompatsiaris Ioannis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">MediaEval, emotion detection,  movies video, Visual and audio analysis</subfield>
  </datafield>
  <controlfield tag="005">20200120164330.0</controlfield>
  <controlfield tag="001">3491644</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute, Centre for Research and Technology Hellas</subfield>
    <subfield code="a">Michail Emmanouil</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute, Centre for Research and Technology Hellas</subfield>
    <subfield code="a">Avgerinakis Konstantinos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute, Centre for Research and Technology Hellas</subfield>
    <subfield code="a">Vrochidis Stefanos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Queen Mary University of London</subfield>
    <subfield code="a">Patras Ioannis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute, Centre for Research and Technology Hellas</subfield>
    <subfield code="a">Kompatsiaris  Ioannis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">823652</subfield>
    <subfield code="z">md5:6dd89ae4c2524d511d07c11b6adc618c</subfield>
    <subfield code="u">https://zenodo.org/record/3491644/files/MediaEval_2018_Emotion_Final.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-10-17</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3491644</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute, Centre for Research and Technology Hellas</subfield>
    <subfield code="a">Batziou Elissavet</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Visual and audio analysis of movies video for emotion detection@ Emotional Impact of Movies task MediaEval 2018</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This work reports the methodology that CERTH-ITI team developed so as to recognize the emotional impact that movies have to its viewers in terms of valence/arousal and fear. More Specifically,deep convolutional neural networks and several machine learning techniques are utilized to extract visual features and classify them based on the predicted model, while audio features are also taken into account in the fear scenario, leading to highly accurate recognition rates.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">arxiv</subfield>
    <subfield code="i">isDerivedFrom</subfield>
    <subfield code="a">arXiv:1909.01763</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3491643</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3491644</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">workingpaper</subfield>
  </datafield>
</record>
25
14
views
downloads
All versions This version
Views 2525
Downloads 1414
Data volume 11.5 MB11.5 MB
Unique views 2323
Unique downloads 1111

Share

Cite as