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ABSTRACT 18 

Beyond its role as reward for pollinators, floral nectar also provides habitat for specialized 19 

and opportunistic yeasts and bacteria. These microbes modify nectar chemistry, often altering 20 

mutualistic relationships between plants and pollinators in ways that we are only beginning to 21 

understand. Many studies on this multi-partite system have focused on either yeasts or 22 

bacteria without consideration of yeast-bacterium interactions, but recent evidence suggests 23 

that such interactions drive the assembly of nectar microbial communities and its 24 

consequences for pollination. Unexplored potential mechanisms of yeast-bacterium 25 

interactions include the formation of physical complexes, nutritional interactions, antibiosis, 26 

signaling-based interactions, and horizontal gene transfer. We argue that studying these 27 

mechanisms can elucidate how nectar microbial communities are established and affect plant 28 

fitness via pollinators.  29 
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MAIN TEXT 30 

Microbial ecology of floral nectar 31 

Virtually all ecosystems contain both fungi and bacteria. They interact with each other via 32 

diverse mechanisms ranging from trophic interactions to biofilm formation and even the 33 

interchange of genetic information, to name just a few [1,2]. These interactions are receiving 34 

increasing attention as we understand more about how the roles of fungi and bacteria as 35 

decomposers, nitrogen fixers, pathogens, and mutualistic partners of plants and animals are 36 

modified by fungus-bacterium interactions [3-8]. 37 

 38 

In this context, one emerging focus of plant science is the study of floral nectar as a habitat 39 

for both fungi (particularly yeasts) and bacteria that can withstand high osmotic pressure and 40 

secondary compounds (Box 1). Recent studies indicate that these microorganisms reach high 41 

densities in nectar (up to >105 cells/mm3 for yeasts and >107 cells/mm3 for bacteria [9-11]) 42 

and modify nectar chemistry in ways that alter pollinator foraging and, consequently, seed set 43 

and other fecundity parameters of plants [12–20]. Likewise, it has been shown that microbe-44 

induced changes in nectar chemistry can affect longevity and other life-history characteristics 45 

of nectar-feeding insects [21]. 46 

 47 

Although bacteria and yeasts are both found frequently in floral nectar [22–24] and can have 48 

contrasting effects on nectar traits [19,25], most studies so far have focused on either bacteria 49 

or yeasts [9-12,26–32], and much remains unknown about interactions between these two 50 

microbial groups. In this Opinion article, we briefly review the current knowledge of yeast-51 

bacterium interactions and identify potential mechanisms of the interactions that we believe 52 

would be worthwhile to study. With this article, we hope to stimulate more research on yeast-53 
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bacterium interactions, which we believe will be necessary to fully understand the effects of 54 

nectar microbes on plants and their pollinators. 55 

 56 

Current evidence for yeast-bacterium interactions and consequences for plants 57 

The microbiome of floral nectar is species-poor relative to that of other parts of plants (Box 58 

2). However, an increasing number of recent studies suggest strong associations between 59 

yeasts and bacteria in floral nectar. For example, a survey of nectar microorganisms 60 

associated with diverse species of Mediterranean plants in southern Spain found that 61 

culturable bacteria and yeasts co-occurred more often than would be expected by chance and 62 

identified three significant and relatively frequent positive bacterium-yeast associations: 63 

Acinetobacter spp. with Metschnikowia gruessii, Acinetobacter spp. with M. reukaufii, and 64 

Leuconostoc sp. with M. reukaufii [22]. Co-occurrence might be facilitated by resource 65 

partitioning between yeasts and bacteria in nectar. For instance, Metschnikowia spp. and the 66 

nectar acinetobacters Acinetobacter nectaris and A. boissieri may have complementary 67 

carbon assimilation profiles, with the yeast depleting glucose and enriching floral nectar in 68 

fructose and the bacteria preferentially using the latter monosaccharide [33]. 69 

 70 

Recent laboratory experiments, however, suggested priority effects (Figure 1) between A. 71 

nectaris and M. reukaufii, in which A. nectaris decreased the abundance of M. reukaufii when 72 

introduced to nectar earlier than the yeast and, conversely, M. reukaufii decreased A. nectaris 73 

abundance when the order of introduction was reversed (T. Fukami et al., unpublished 74 

results). Similar priority effects were found between M. reukaufii and the acid acetic 75 

bacterium Neokomagatea (formerly Gluconobacter) sp., both isolated from the floral nectar 76 

of Diplacus (Mimulus) aurantiacus (Phrymaceae, sticky monkey-flower) [34]. Priority 77 

effects have also been found in a field experiment, where inoculation of D. aurantiacus 78 
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nectar with Neokomagataea sp. resulted in this bacterium dominating the nectar communities 79 

across multiple floral generations. Neokomagataea sp. dominance even led to exclusion of M. 80 

reukaufii despite M. reukaufii being common in nearby plants to which Neokomagataea sp. 81 

was not introduced [35]. 82 

 83 

Antagonistic interactions between yeasts and bacteria in nectar were also suggested by Tsuji 84 

and Fukami [36]. This study showed that reduced animal visitation caused a decline in yeast 85 

(mostly M. reukaufii) frequency and abundance in the nectar of male flowers of the dioecious 86 

shrub Eurya emarginata (Pentaphylacaceae) and an increase in bacterial (mostly A. nectaris 87 

and A. boissieri) abundance. This result was interpreted as possible competitive release of 88 

bacteria from yeasts, which, curiously, was not found in female flowers of the same shrub 89 

(where yeasts were never frequently found) nor for Eurya japonica plants in the region [36]. 90 

 91 

The amount, composition, and timing of nectar production can influence the array of animals 92 

that the flower attracts and their foraging behavior, but all these parameters can be affected 93 

by factors that are not entirely under the control of the producing plant, which include the 94 

activity of bacteria and yeasts in nectar [37–39]. Vannette and Fukami [25] have recently 95 

demonstrated that M. reukaufii and Neokomagatea sp. can have a significant and somewhat 96 

contrasting impact on the floral nectar traits of D. aurantiacus. Specifically, M. reukaufii 97 

reduced the concentration and altered the composition of amino acids in nectar, but had no 98 

significant effect on the total nectar volume produced by the plant or its sugar composition, 99 

whereas bacteria increased the amino acid concentration, enhanced the proportion of 100 

monosaccharides, and reduced the total volume of nectar [25]. However, combined 101 

inoculation of yeasts and bacteria was not carried out in this or previous similar studies 102 

[13,19], overlooking potential effects of yeast-bacterium interactions on nectar traits. 103 
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 104 

Yeasts and bacteria may also differentially alter secondary metabolites in nectar, including 105 

volatile compounds [15,40]. Nectar microorganisms can produce blends of volatile 106 

compounds that attract or deter pollinators [15,40,41]. In turn, this effect on pollinators might 107 

have consequences on microbial and plant fitness and the dispersal of microorganisms from 108 

flower to flower [15]. Furthermore, other nectar-consuming animals can also be affected by 109 

the volatile-producing activity of nectar microbes, as recently demonstrated for the generalist 110 

aphid parasitoid Aphidius ervi (Hymenoptera) [42]. However, this line of research has also 111 

been focused on the separate effects of bacteria and yeasts, rather than the potential combined 112 

effects. 113 

 114 

All in all, studies so far suggest that yeast-bacterium interactions in floral nectar can be strong 115 

enough to affect plant-pollinator mutualism, but that the direction and strength of yeast-116 

bacterium interactions might depend on many factors, including the microbes involved, the 117 

plant hosts, their intra-species variability in floral traits, environmental conditions [34], and 118 

the order of arrival of microbes to floral nectar, which, in turn, depends on the dispersal 119 

activity of pollinators and other floral visitors [43]. To explain the conditions under which 120 

yeasts and bacteria interact and affect plants and pollinators, what is needed now is a better 121 

understanding of the mechanisms that underlie yeast-bacterium interactions in floral nectar. 122 

 123 

Unexplored potential mechanisms of yeast-bacterium interactions in floral nectar 124 

Potential mechanisms of yeast-bacterium interactions include the formation of physical 125 

complexes, nutritional interactions, antibiosis, signaling-based interactions and horizontal 126 

gene transfer between yeast and bacterial cells [1,2]. Although the importance of these 127 



7 

 

mechanisms in nectar is currently unknown, they may operate simultaneously, and potentially 128 

result in unexpected consequences even for host plants and floral visitors (Figure 2). 129 

 130 

Formation of physical complexes 131 

Fungi and bacteria often form assemblies in which participating cells display physical and 132 

physiological properties distinct from free-living cells [44]. These associations are found in a 133 

variety of microbial habitats in and on plants and vary in their degree of complexity and 134 

intimacy, ranging from loose and disordered cell aggregates to multi-species biofilms held 135 

together by an extracellular matrix and highly specific endosymbiotic associations [2,8,44]. 136 

Inspection of a nectar drop under the microscope makes clear that simple forms of physical 137 

association (e.g. polymicrobial groups of cells) are common in nectar microbial communities. 138 

Similarly, although polymicrobial biofilms in floral nectar have not been documented, they 139 

are widespread in the rhizosphere and the phylloplane [45]. There is no reason to discard 140 

their possible occurrence on nectary surfaces. If they do occur, the extracellular matrix 141 

surrounding the microbes might protect them against osmotic pressure, toxins, and other 142 

stressors that limit microbial growth [46]. Formation of microbial biofilms on the surface of 143 

pollinator’s mouthparts may also be possible, given the anchor-like morphology of the 144 

aggregates of M. gruessii cells [28] and the stickiness of the colonies of bacteria such as A. 145 

nectaris and Rosenbergiella spp. (S. Álvarez-Pérez et al., unpublished results). 146 

 147 

Bacteria do not only attach to fungal cells, but can also colonize them intracellularly, as seen 148 

in diverse species of soil, rhizophere, and phylloplane fungi [1,2,8]. Examples of 149 

endosymbiotic bacteria hosted within yeast partners are scarce in the literature, but Siavoshi 150 

et al. [47] reported that diverse osmotolerant yeasts isolated from whole flowers, fruits, and 151 

honeybees contained in their vacuoles bacterial cells identified as Helicobacter pylori and 152 



8 

 

hypothesized that this intracellular establishment could be an adaptation to the stressful 153 

conditions of sugar-rich environments. If such intracellular bacteria were found in nectar 154 

yeasts, the study of the consequences for both microbial partners (e.g. genome signatures, 155 

transmission during yeast mitosis and/or meiosis, yeast-bacteria co-evolution) and the plant-156 

animal system would open exciting new avenues in nectar research. 157 

 158 

Nutritional interactions 159 

Competition for nutrients may drive yeast-bacterium interactions in nectar [34]. In particular, 160 

M. reukaufii seems to have undergone extensive gene duplications, especially in high-161 

capacity amino acid transporter genes, allowing the yeast to exert strong priority effects 162 

against other microbes in nitrogen-poor habitats such as nectar [48,49]. An opposite trend in 163 

genome evolution might have taken place for A. nectaris and A. boissieri, whose genome 164 

sizes are well below the average value for the genus Acinetobacter (2.7 vs. 3.9 Mb) [50]. 165 

Such a difference in genome size between the A. nectaris/boissieri clade and most other 166 

acinetobacters could reflect adaptation to the carbohydrate-rich condition of floral nectar and 167 

the digestive tract of pollinators. A similar scenario has been hypothesized for some insect-168 

associated bacteria such as Lactobacillus kunkeei, whose genome is remarkably smaller than 169 

those of other species of Lactobacillus and seems to have lost a substantial part of the genetic 170 

repertoire encoding for amino acid metabolism and carbohydrate metabolism and transport 171 

[51]. 172 

 173 

Competition among nectar microbes for iron and other micronutrients is also possible. Yeasts 174 

such as Metschnikowia pulcherrima [52] and species of bacterial genera such as 175 

Acinetobacter and Pseudomonas [53,54] can produce chelators that allow them to efficiently 176 

acquire iron from the environment and make it unavailable for other microbes. Moreover, 177 
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bacterial mycophagy [55] and bacterial farming by fungi [56] have not yet been reported to 178 

occur in the nectar microbiota, but given the high cell densities that yeasts and bacteria can 179 

reach in floral nectar [9-11], these types of nutritional interactions might be likely. Similarly, 180 

the possibility that nectar microbes engage in cross-feeding and syntrophic interactions 181 

[57] cannot be discarded.  182 

 183 

Antibiosis and signaling-based interactions 184 

Some species of Metschnikowia and other yeasts prevalent in nectar exhibit antimicrobial 185 

activity against plant pathogens [58,59], suggesting that antibiosis might shape nectar 186 

microbial communities. Likewise, diverse bacterial genera found in nectar (e.g. Pseudomonas 187 

and Pantoea) produce antifungal substances and bacteriocins [60,61]. Tucker and Fukami 188 

[34] demonstrated that environmental variability could counteract the inhibitory effects of 189 

some substances generated by nectar microbes (e.g. H+ ions, which reduce nectar pH and 190 

hinder yeast growth), thus promoting coexistence of yeasts and bacteria in floral nectar. As 191 

floral nectar is a dynamic system where biotic and abiotic conditions are highly variable 192 

during a flower’s lifespan [39,62], the role of inhibitory substances on yeast-bacterium 193 

interactions might be difficult to predict. A better knowledge (e.g. through metabolomic and 194 

transcriptomic analyses) of the metabolites produced by microbes when colonizing nectar 195 

alone or in interactions, supplemented with mathematical modelling of microbial community 196 

assembly [34], would be of great help in this regard. 197 

 198 

Apart from their role in affecting the foraging behavior of floral visitors, some metabolites of 199 

microbial origin can act as signaling molecules in interactions among microbes and between 200 

these microbes and their host plants [63]. These semiochemicals can affect the behavior, 201 

population dynamics, and gene expression of other microorganisms [2,63]. In addition, some 202 
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semiochemicals of fungal origin can alter bacterial quorum sensing, affecting population 203 

density-dependent activities of the target species, including effects on morphogenesis, biofilm 204 

formation, antibiotic production, and interactions with animal and plant hosts [2,64,65]. 205 

Although quorum sensing was originally considered in bacteria, similar signaling 206 

mechanisms can occur in fungi, and even several cases of inter-kingdom quorum sensing 207 

have been reported [64,65]. Farnesol, a major quorum sensing molecule in diverse fungal 208 

species [41,64,65], is also a component of insect pheromones that mediate foraging, sexual 209 

attraction, and other behavioral responses, and has been found in the flowers of some plants 210 

[66–68]. Even though the study of semiochemical production by nectar microbes is still in its 211 

infancy [15,40,42] and, to our knowledge, farnesol release by nectar yeasts remains to be 212 

demonstrated, it seems possible that microbe-microbe communication changes floral visitors’ 213 

behavior as a side effect. 214 

 215 

Horizontal gene transfer 216 

Horizontal gene transfer is prevalent in plant-associated bacteria [69,70]. Numerous cases of 217 

horizontal gene transfer from bacteria to fungi have also been described, although it seems 218 

less frequent than horizontal gene transfer among bacteria [70,71]. Although horizontal gene 219 

transfer has not been reported for nectar microbes, the genome of A. nectaris contains 220 

sequences encoding transposases and prophage sequences [50]. Additionally, it has been 221 

demonstrated that Acinetobacter baylyi, which is also found in floral nectar ([10]; S. Álvarez-222 

Pérez et al., unpublished results), can speed up horizontal gene transfer by actively killing 223 

other bacteria to extract and take up parts of their DNA, and that this phenomenon is more 224 

effective when A. baylyi outnumbers its “victim” and also when both co-exist for a short time 225 

[72]. Furthermore, other nectar bacteria such as Pseudomonas spp. and acetic acid bacteria 226 

have a complex history of genome evolution, which might include horizontal gene transfer 227 
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events with yeasts [70,73–75]. Future research should therefore focus on finding possible 228 

hallmarks of passive and active (e.g. killing-enhanced, as in A. baylyi) horizontal gene 229 

transfer in the genome of nectar microbes. 230 

 231 

Concluding Remarks and Future Perspectives 232 

The conventional view that floral nectar is merely a reward that angiosperms offer pollinators 233 

has been challenged in recent years. Floral nectar is now routinely seen also as the habitat of 234 

specialized yeasts and bacteria capable of overcoming high sugar concentrations and other 235 

hurdles inflicted by plants, and opportunistic microbes profiting from the activity of the 236 

former. We have argued here that elucidating the mechanisms of yeast-bacterium interactions 237 

will be essential to advancing the understanding of the effects that these microorganisms have 238 

on the behavior of pollinators and other floral visitors and, eventually, plant fitness. Many 239 

questions remain to be addressed (see some examples in Outstanding Questions) regarding 240 

the ecology and evolution of the nectar inhabitants and their interactions with animals and 241 

plants. Because pollination is a critical component of many agricultural crops, better 242 

knowledge on yeast-bacterium interactions that will be gained by answering outstanding 243 

questions has the potential to facilitate improved plant breeding and crop production. 244 
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FIGURE LEGENDS 465 

Figure 1. Typical setting of a microcosm experiment to test for priority effects between 466 

nectar microorganisms [34,94,95]. Sequential microbial dispersal events to flowers is 467 

mimicked using plastic microtubes loaded with sterile synthetic nectar (or, alternatively, 468 

filtered natural nectar). In the example shown, the experiment includes two treatments: (A) 469 

“bacteria-first,” in which the bacterial species is first introduced and sometime later (t1) the 470 

yeast species is inoculated; and (B) “yeast-first,” in which the introduction order is the 471 

opposite. In both cases, after a second incubation time (t2), the content of the microtubes is 472 

plated on selective media and colony forming units of yeasts and bacteria counted separately 473 

to estimate the final cell density. Control treatments (e.g. only yeasts, only bacteria, and no 474 

microbes) are run in parallel. The results of the experiment displayed in the figure depict 475 

strong priority effects, as in Tucker and Fukami [34]. Figure created with BioRender 476 

(https://biorender.io). 477 

 478 

  479 

https://biorender.io/
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Figure 2. Overview of the potential mechanisms of yeast-bacterium interactions considered 480 

in this article: i) formation of physical complexes; ii) antibiosis and signaling-based 481 

interactions; iii) nutritional interactions; and iv) horizontal gene transfer. Figure created with 482 

BioRender (https://biorender.io). 483 

  484 

https://biorender.io/
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TEXT BOX 1. Antimicrobial defenses of floral nectar 485 

The high sugar concentration of floral nectar exerts osmotic pressure on microbes and 486 

represents a filter for microbial life [46,76]. However, high sugar concentration can 487 

encourage growth of a wide range of osmotolerant microorganisms including plant pathogens 488 

[77,78]. Consequently, it has been hypothesized that some plants may resist microbial 489 

colonization of nectar by producing high levels of hydrogen peroxide and other reactive 490 

oxygen species, toxic secondary metabolites from diverse chemical families (e.g. alkaloids, 491 

phenolics and terpenoids), or different lytic enzymes (e.g. chitinases, lipases and RNases) 492 

[62,78–82]. These chemicals are geographically and phylogenetically widespread across the 493 

plant kingdom, although species may vary in defense mechanisms [62,79]. In turn, many 494 

nectar-inhabiting microbes appear to possess catalase activity that might protect them from 495 

the toxic action of hydrogen peroxide [23,24,26,83]. Tolerance of nectar yeasts and bacteria 496 

to diverse secondary compounds of plant origin has also been reported [83,84]. Antimicrobial 497 

chemicals in nectar has also been hypothesized to encourage specialist pollinators, deter 498 

nectar robbers, and alter pollinator behavior [79,85–87]. 499 

  500 
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TEXT BOX 2. The nectar microbiome 501 

Evidence indicates that floral nectar is initially sterile, but rapidly colonized by 502 

microorganisms after anthesis [28,88] from various sources, including the air, rain drops, 503 

dew, pollen, corolla, and especially the body (generally mouthparts) of flower-visiting 504 

animals [28,83,89]. Nectar microbial communities are species-poor relative to, for example, 505 

the rhizosphere or the phylloplane, and are often dominated by yeasts of the genus 506 

Metschnikowia and bacteria of the genus Acinetobacter [10,22-24,26,27,31,43,90]. Other 507 

microbes that are found in nectar include yeast species of the genera Candida, Cryptococcus, 508 

Rhodotorula, and Sporobolomyces, and bacteria such as Asaia, Erwinia, Neokomagataea, 509 

Pantoea, Pseudomonas, and Rosenbergiella (for a detailed list, see [90]). Some of these other 510 

species may be opportunistic (i.e. not adapted to the nectar environment) and generally occur 511 

in lower frequency than Metschnikowia and Acinetobacter [76,83,90]. 512 

 513 

In addition to the filtering effect of the physical and chemical characteristics of nectar (which 514 

may be variable even within the same plant [39]) on each microbial species, dispersal 515 

limitation [27,43] and microbe-microbe interactions can also determine the species 516 

composition of the nectar microbiome. Microbial dispersal and interactions are affected by a 517 

variety of factors, including the plant’s phenology, the density, longevity, sex, and spatial 518 

distribution of flowers, and the activity of legitimate and non-legitimate floral visitors 519 

[27,36,91,92]. Nectar secretion patterns may also affect the assembly of the nectar 520 

microbiome by providing new nutrients to the microorganisms. All these factors depend to 521 

some degree on the abiotic conditions (temperature, water availability, photoperiod, etc., even 522 

at microscales). Although individual flowers are ephemeral, the collection of flowers on a 523 

plant functions as a microbial metacommunity that lasts longer than individual flowers while 524 
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the plant is blooming [27,35,91]. Outside of the flowering season, flower-visiting animals 525 

may act as reservoirs of nectar microbes [93].   526 
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GLOSSARY 527 

Antibiosis: interaction between organisms in which at least one of them is adversely affected 528 

by the release of metabolites or cell components from the other. 529 

Bacterial farming: mutualistic association established between bacteria and other organisms 530 

(e.g. fungi or social amoeba) in which the bacteria benefit through dispersal and rearing, 531 

while the other partner benefits from the harvesting of an additional carbon source and, in 532 

some cases, increased stress resistance (e.g. in some filamentous fungi [56]). 533 

Bacteriocin: antibacterial peptide or protein produced by some bacteria that either kills or 534 

inhibits the growth of other bacteria. 535 

Chelator: small molecule that binds tightly to metal ions. 536 

Cross-feeding: interactions involving the exchange of metabolites or cofactors between 537 

organisms. These interactions can vary in the degree of reciprocity (from completely 538 

unidirectional to bidirectional) and cost-benefit balance for the interacting partners. 539 

Endosymbiotic: living within the body or cells of another organism in a mutualistic 540 

relationship. 541 

Horizontal gene transfer: sharing of genetic material between organisms that are not in a 542 

parent–offspring relationship and may even be members of different species. 543 

Mycophagy: literally “feeding on fungus” and synonymous with “fungivory.” Bacterial 544 

mycophagy refers to the ability of bacteria to grow at the expense of living fungal cells and/or 545 

hyphae. 546 

Osmotic pressure: pressure difference needed to stop the flow of solvents across a 547 

semipermeable membrane. It can also be defined as the tendency of solvent molecules to 548 

move in the direction of lower solvent activity. 549 

Phylloplane: surface of a leaf considered as a habitat, generally for microorganisms. 550 
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Priority effects: effects that the arrival order and initial abundance of species have on the 551 

development of assembling communities at a local site (e.g. a flower). These effects of 552 

community assembly history occur when species influence one another differently (through 553 

resource competition, cross-feeding, and other types of local interactions), depending on 554 

arrival order and initial abundance. 555 

Prophage: bacteriophage genome integrated into the genome of a host cell. 556 

Quorum sensing: process of cell-to-cell communication that allows microorganisms 557 

(typically bacteria) to share information about cell density and adjust gene expression 558 

accordingly. This sharing of information is achieved through the production and release of 559 

chemical signal molecules called autoinducers that increase in concentration as a function of 560 

cell density. 561 

Rhizosphere: thin soil layer around roots that is directly influenced by root secretions and 562 

associated soil microorganisms. 563 

Semiochemical: chemical substance that conveys a signal from one organism to another, of 564 

the same or a different species, and frequently modifies the behavior of the recipient 565 

organism. 566 

Syntrophy: relationship between the individuals of different species in which one or both 567 

benefit nutritionally from the presence of the other. The classical concept of syntrophy refers 568 

to the close associations established between microorganisms under anoxic conditions and 569 

energy constraints to degrade complex organic compounds, where one of the partners keeps 570 

intermediate products (e.g. hydrogen) at low concentrations by active consumption, 571 

facilitating further degradation by the other partner. However, other “non-classical” types of 572 

syntrophy have also been described [96]. 573 
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Transposase: enzyme that binds to the end of a transposon (i.e. DNA sequence that can 574 

change its position within a genome) and catalyzes its movement to another part of the 575 

genome. 576 


