
CitePlag: A Citation-based Plagiarism Detection System
Prototype

Norman Meuschke
UC Berkeley, USA

meuschke@berkeley.edu

Bela Gipp
UC Berkeley, USA / OvGU, Germany

gipp@berkeley.edu

Corinna Breitinger
UC Berkeley, USA

breitinger@berkeley.edu

ABSTRACT
This paper presents an open-source prototype of a citation-based

plagiarism detection system called CitePlag. The underlying idea of

the system is to evaluate the citations of academic documents as

language independent markers to detect plagiarism. CitePlag uses

three different detection algorithms that analyze the citation

sequence of academic documents for similar patterns that may

indicate unduly used foreign text or ideas. The algorithms consider

multiple citation-related factors such as proximity and order of

citations within the text, or their probability of co-occurrence in

order to compute document similarity scores. We present technical

details of CitePlag’s detection algorithms and the acquisition of test

data from the PubMed Central Open Access Subset. Future

advancement of the prototype lies in increasing the reference

database by enabling the system to process more document and

citation formats. Improving CitePlag’s detection algorithms and

scoring functions to reduce the number of false positives is another

major goal. Eventually, we plan to integrate text-based detection

algorithms in addition to the citation-based detection algorithms

within CitePlag.

Keywords
Plagiarism Detection System, Prototype, Open Source, Detection

Algorithms, Citation Analysis, CbPD

1. INTRODUCTION
Studies show that existing plagiarism detection systems (PDS) can

accurately identify copies or modestly obfuscated plagiarism.

Strongly reworded paraphrases, translations, and idea plagiarism,

however, lack the lexical text similarities that existing PDS require

to discover plagiarism. Therefore, current PDS always almost fail to

detect these plagiarism forms [16, 17, 18, 25, 26, 27, 36].

For academic texts, citation pattern analysis allows us to assess

document similarity independent of lexical text matches. We define

citation patterns as sequences of citations in two texts, and ,

which partially or entirely link to shared references of and . We

use the term “citation” for referring to strings in the body of

academic texts that link to sources in the bibliography and
“references” for denoting entries in the bibliography. Figure 1
shows the concept of citation pattern analysis.

Citation pattern analysis evaluates the number of shared citations,

their order of appearance, their proximity to each other in the text,

and their probability of co-occurrence for computing a document

similarity score. We approximate the co-occurrence probability of

citations based on their usage frequencies within the collection [14].

Plagiarism detection (PD) is one possible application of citation

pattern analysis. The approach can also serve other information

retrieval tasks, such as recommending related literature. We use the

term citation-based plagiarism detection (CbPD) for distinguishing

the application of citation pattern analysis for PD purposes.

Doc C

Doc E

Doc D

Section 1
This is an example text with references to different documents for illustrating
the usage of citation analysis for plagiarism detection. This is an example text
with references to different documents for illustrating the usage of citation
analysis for plagiarism detection.
This is a in-text citation [1]. This is an example text with references to different
documents for illustrating the usage of citation analysis for plagiarism
detection. This is an example text with references to different documents for

illustrating the usage of citation analysis for plagiarism detection.

Section 2
Another in-text citation [2]. tThis is an example text with references to
different documents for illustrating the usage of citation analysis for plagiarism
detection. This is an example text with references to different documents for
illustrating the usage of citation analysis for plagiarism detection. This is a
repeated in-text citation [1].
This is an example text with references to different documents for illustrating
the usage of citation analysis for plagiarism detection. This is an example text
with references to different documents for illustrating the usage of citation
analysis for plagiarism detection.

Setion 3
A third in-text citation [3]. This is an example text with references to different
documents for illustrating the usage of citation analysis for plagiarism
detection. This is an example text with references to different documents for
illustrating the usage of citation analysis for plagiarism detection. a final in-
text-citation[2].

References
 [1]
 [2]

 [3]

Document B

This is an example text with references to different documents for illustrating
the usage of citation analysis for plagiarism detection. This is a in-text citation
[1]. This is an example text with references to different documents for
illustrating the usage of citation analysis for plagiarism detection. Another
example for an in-text citation [2].

This is an example text with references to different documents for illustrating
the usage of citation analysis for plagiarism detection.

This is an example text with references to different documents for illustrating
the usage of citation analysis for plagiarism detection. This is an example text
with references to different documents for illustrating the usage of citation
analysis for plagiarism detection. This is an example text with references to
different documents for illustrating the usage of citation analysis for plagiarism
detection.

This is an example text with references to different documents for illustrating
the usage of citation analysis for plagiarism detection. This is an example text
with references to different documents for illustrating the usage of citation
analysis for plagiarism detection. Here’s a third in-text citation [3]. This is an
example text with references to different documents for illustrating the usage of
citation analysis for plagiarism detection.

This is an example text with references to different documents for illustrating
the usage of citation analysis for plagiarism detection.

Document A

References
 [1]
 [2]

 [3]

EDCDoc A DECDCDoc B

Citation Pattern Citation Pattern

Pattern Comparison

Figure 1: Concept of citation pattern analysis

To allow for a CbPD analysis, the suspicious documents and the

documents in the reference collection must possess the required

input data for a citation pattern analysis. The requirements on input

data are twofold.

First, the documents must contain citations within their accessible

full text, because, knowing the position of citations within the text is

crucial for identifying citation patterns.

Second, accurate citation information must be obtainable for

identifying matching citations between documents. If this data is not

readily accessible, tools able to extract citation information from the

original documents must be applicable to the collection. This second

requirement is of importance because citation extraction tools can

only interpret a fraction of the many style conventions that exist for

citing sources in academic texts. Depending on the citation style of

an academic field, the data to include in citation and reference

strings, as well as its order, and formatting varies. Tools for

automated citation and reference extraction are either knowledge- or

rule-based or employ machine learning [7]. To achieve good

recognition performance, a tool’s system of rules or its training set

must be tailored to specific citation styles.

In prior studies, we demonstrated that the CbPD concept is a

valuable enhancement, not a substitution, to existing text-based PD

approaches [13, 15]. CbPD can partially identify forms of

plagiarism that existing PDS cannot detect. For example, CbPD

identified 13 of 16 translated plagiarisms in the dissertation of Mr.

Guttenberg, Germany’s former minister of defense [15].

The setups of these earlier studies were limited and did not entirely

reflect real-world PD scenarios. In [15], we conducted the

citation-based plagiarism check subsequent to the manual

verification of plagiarism in Guttenberg’s thesis and limited the

reference collection to proven sources of plagiarism. Furthermore,

the uncommon citation formats of the analyzed documents, which

5
th
 International Plagiarism Conference ‘12,

July 16–18, 2012, Newcastle upon Tyne, UK.

originate from the legal domain, prevented a fully automated

citation extraction and required manual rework. In [13], we

artificially plagiarized documents and inserted them into the test

collection. The goal of our current research is a large-scale

evaluation of our citation-based PDS prototype.

The requirements for a CbPD analysis restrain us from using

existing collections for testing CitePlag and comparing it to

text-based PDS. Although test collections containing verified cases

of plagiarism exist from prior PDS comparisons, e.g. [4, 23, 35],

none of these collections offers academic full texts that include

citations and references. Given the unsuitability of existing test

collections, we chose the PubMed Central Open Access Subset

(PMC OAS) for implementing a prototype that can analyze a large,

real-world document collection.

We will not present the individual similarities we detected in the

PMC OAS in this paper, because we are convinced no suspicion of

potential academic misconduct should be expressed prior to a

thorough expert investigation. Only domain experts can fully

comprehend and judge the scientific contribution of certain works,

especially, since the understanding of what constitutes undue

publication behavior and/or self-plagiarism varies between

academic fields [1, 3, 5]. Experts often require many weeks, even

months, to properly analyze plagiarism allegations. The recent

investigations into more than 20 alleged plagiarism offenses, mainly

involving German politicians, made clear this immense time

commitment [33].

During plagiarism investigations, affected authors must have the

opportunity to make their opinion heard, since suspicious

similarities between documents sometimes occur without any

wrongdoing of authors. We construct a fictitious, yet possible

scenario to illustrate this necessity. Imagine an accidental omission

of an author name on a journal article written by several authors.

Parts of the journal article may be legitimately similar to a previous

conference article of the omitted author. A PDS may flag the journal

article as being suspiciously similar to the conference article. The

accidentally omitted author name may cause a reviewer to suspect

plagiarism. Giving authors the opportunity to comment on findings

before making public any allegations is thus a simple way to

prevent undue and unwarranted damage to the reputation of authors.

We are not experts in the life sciences and are therefore more likely

to fail in appropriately classifying detected similarities in the PMC

OAS. Furthermore, we are unable to perform careful investigations,

especially because we compare all ~234,000 documents the PMC

OAS to all other documents in the corpus.

Any automated PD procedure is subject to an error rate that can

cause false positives. For CbPD, the main sources of error are the

extraction and disambiguation of citation and reference data from

within the text. Currently, CitePlag is a PDS prototype. Major

functionalities of CitePlag, such as the document import and the

detection process (see section 3) are the focus of our current

research and subject to continuous enhance- and improvement.

Therefore, we advise users of the system to treat its detection results

with an appropriate skepticism.

This paper is a research-in-progress report rather than a final

description and evaluation of CitePlag. We demonstrated the

capabilities of CbPD using the Guttenberg plagiarism case verified

by experts prior to the current study [15]. This paper presents the

current state of the prototype, which we make freely available under

an open-source license. Please consult the CbPD project website at

www.sciplore.org for latest technical details about CitePlag, source

code download, and related information. By offering CitePlag as an

open-source system, we invite everyone who is interested, to

analyze the PMC OAS and draw his or her own conclusions from

the indicated similarities.

The structure of this report is as follows. Section 2 introduces the

PubMed Central Open Access Subset. Section 3 presents technical

details of the CitePlag prototype, while section 4 outlines future

research concerning the CbPD approach and the CitePlag prototype.

2. PUBMED CENTRAL OA SUBSET
The PMC OAS comprises ~234,000 Open Access full-text articles

from the life sciences. Citation and reference data for articles is

available in XML format, which simplifies data extraction.

The U.S. National Center for Biotechnology Information (NCBI), a

subunit of the U.S. National Library of Medicine (NLM), provides

the PMC OAS together with numerous other information systems.

Figure 2 presents an overview of systems and data sources and their

relation to the PMC OAS. This overview will clarify some technical

terminology used in section 3.

NCBI

PMC®

PubMed®

Other
Sources

Journal
publishers

NLM

MEDLINE®

Authors

indexes
and links

.pdf

.nxml

PMC OA
Subset

OA & non-OA
publication data

OA
publications

comments,
reviews,
letters

Figure 2: Information systems related to the PMC OAS

MEDLINE® is a comprehensive index of ~19M articles from

~5,600 peer-reviewed journals in the life sciences. MEDLINE does

not offer full texts, but it provides structured records of

bibliographic data. PubMed® is an information system that offers

free access to MEDLINE records, and additional content such as

articles outside of MEDLINE’s scope. PubMed comprises ~21M

records for which it lists outgoing links to full text sources if

available. Most records in PubMed Central® (PMC) are also part of

MEDLINE and/or PubMed. PMC offers additional content that

does not necessarily meet the formal criteria for being included in

MEDLINE or PubMed, such as editorial letters, comments, book

reviews, conference summaries and non-journal manuscripts.

The NLM and NCBI assign system-wide unique, numerical IDs to

records upon inclusion in MEDLINE, PubMed, or PMC. We will

refer to these IDs as MEDID for MEDLINE, PMID for PubMed

and PMCID for PMC entry keys.

2.1.1 The PMC OAS in Prior PD Studies
In an earlier study, researchers from the Garner Lab analyzed a

subset of ~72,000 articles from the PMC OAS using their

self-developed, text-based similarity algorithm eTBLAST [28].

http://www.sciplore.org/

eTBLAST is an adaption of biomedical sequence alignment

algorithms to text [21]. The Garner Lab group could not identify

cases of plagiarism in texts originating from the PMC OAS.

In comparable examinations, the same research group used

eTBLAST to check abstracts of research articles contained in

MEDLINE records for suspicious similarities [10, 11, 19]. During

these studies, the team manually acquired and checked 4,515 full

texts for articles with highly similar abstracts. Investigating these

articles yielded 252 documents with a full text similarity score

above 50% and non-shared author sets, which made them likely

candidates for plagiarism. An additional 89 cases with the same

similarity criteria had common authors, making them likely

self-plagiarisms. The Garner Lab published the results of all studies

in a database called Déjà vu [8]. Data in Déjà vu is openly

accessible via a web front-end and is available for bulk download.

The Garner Lab team stated three possible reasons for the apparent

absence of plagiarism in the PMC OAS. First, the researchers only

manually checked 34 highly similar full-text article pairs. Second,

the team analyzed less full texts from the PMC OAS than

MEDLINE abstracts. Third, the group found that plagiarized works

appear more often in journals with low impact factors, possibly

because the plagiarists intended to reduce the risk of discovery by

publishing in less popular journals. However, the PMC OAS covers

mostly high-impact journals [28].

We hypothesize that plagiarism is more strongly obfuscated in high

impact journals like those covered by the PMC OAS to avoid

detection. Furthermore, we assume that such strongly disguised

cases of plagiarism are much harder to detect than, for example,

plagiarism committed by students. If these assumptions prove true,

this provides another reason the Garner Lab PDS could not detect

any plagiarized articles. Therefore, analyzing the PMC OAS with a

citation-based PD approach appears promising to test whether

CbPD can identify strongly obfuscated plagiarism.

2.1.2 PMC OAS Document Format
For including articles in PubMed Central, the NCBI requires content

providers to submit texts in Extensible Markup Language (XML)

and in conformance with a Document Type Definition (DTD) called

the Journal Archiving and Interchange Tag Suite (JAITS) [31]. We

refer to JAITS-conformant documents as NXML-texts because they

carry the file extension .nxml. Content providers, mainly

professional publishers, can additionally include articles as a PDF.

We expect the obligation of content providers to supply

JAITS-conformant texts to increase the accuracy of citation and

reference data. Publishers commonly impose predefined formatting

rules on documents to be included in their volumes. We assume that

most publishers providing articles to PMC use automated tools for

the conversion of texts to the NXML format. It is likely that

publishers incorporate this knowledge about specific formatting

conventions into knowledge- or rule-based citation extraction tools.

The precision and recall of such customized citation extraction tools

are likely to be higher than for unspecialized tools.

The JAITS DTD provides markup for most document data that is

necessary for a CbPD analysis. Metadata required for CbPD, such

as: authors, title, publication dates, identifiers (IDs) and the

partitioning of documents into sections, subsections and paragraphs

is marked-up in NXML-texts. The DTD also enforces markup and

linkage of citations and references in the NXML-texts. The

availability of IDs facilitates the identification of shared references

between articles.

The JAITS DTD does not provide markup for sentence and word

boundaries. However, our CbPD algorithms require this information

to analyze how many characters, words or sentences separate

individual citations in the text for computing a similarity score.

Section 3.1 describes details about how the CitePlag prototype

acquires this information from NXML-texts.

In summary, the major advantages that made us choose the PMC

OAS as a collection for demonstrating CitePlag are:

- the inclusion of high quality journal articles;

- the XML markup of most information we require;

- the accuracy of citation and reference data;

- the wide availability of IDs for documents and references;

- the partial analysis by a prior text-based PD study.

3. CITEPLAG PROTOTYPE
CitePlag is an Open Source prototype of a citation-based PDS

developed in Java. We provide CitePlag for download at

www.sciplore.org.

Figure 3 illustrates CitePlag’s system architecture, which consists of

four components - the parser, the database, the detector, and the

report generator. The parser extracts bibliographic data, such as

citations, references, authors, and titles from documents and stores it

in the database. The relational database provides this document data

to the detector. The detector runs the analysis algorithms and feeds

the results back to the database for storage. The report generator

retrieves detection results from the database and summarizes them

for human inspection. The following subsections present the four

main components in more detail.

Detector

Database

detection
results

CitePlag

Report
Generator

detection
results

citation & doc. data

Parser

Figure 3: CitePlag system architecture

3.1 Document Parser
The document parser’s task is to extract all necessary meta-,

citation- and reference data from input documents and import it into

the database. We fitted the parser of the current prototype to the

PMC OAS. Therefore, the current version of CitePlag available for

download is only able to process NXML-texts. In the future, we

plan to replace the prototypic parser with a component that uses the

open-source citation extraction tool ParsCit [6]. The future version

of the parsers will be able to process more citation styles and

document formats, e.g. PDF files.

A major subtask in parsing is determining the exact positions of

citations within the document’s full text. The detection process of

similar citation patterns requires knowing the exact position of

citations in the text. We measure this position in terms of the

character, word, sentence, paragraph, and section count where

citations appear. The parser applies standard Java text processing

methods for acquiring character counts and evaluates the

corresponding tags in the NXML-texts for obtaining the paragraph

and section position of citations. NXML-texts do not provide

markup for sentences and words. Hence, identifying the boundaries

of these elements requires pre-processing prior to data extraction.

The goal of the pre-processing step is to include delimiters for

sentences and words without compromising the existing XML

markup. For performing this task, we developed an independent

sub-component to the parser, the Sentence-Word-Tagger

(SW-Tagger). After the SW-Tagger has identified sentence and

word boundaries, a second sub-component, the Data Parser, extracts

all relevant data and imports it into the database. Figure 4 illustrates

the two-stage parsing process of the CitePlag document parser. The

following two subsections describe the SW-Tagger and the Data

Parser in more detail.

PMC
Doc.

<xml>
</xml>

SW-Tagger

Sentence and Word Markup:
1. Substitution of XML markup (placeholders)
2. Invocation of SPToolkit
3. Word markup based on regular expressions
4. Reinsertion of original XML markup

Tagged
Doc.

<xml>
</xml>

SPToolkit

Data Parser

Recognition and Import of Document Data:
1. Invocation of SAX parser and content handler
2. Customized content handler recognizes NXML

tags and the markup of SW-Tagger
3. Database update through JDBC

SAX Paser

Content
Handler

CitePlag
Database

CitePlag Document Parser

1

Figure 4: Two-stage parsing process for NXML-documents

3.1.1 Sentence-Word-Tagger (SW-Tagger)
SW-Tagger identifies individual sentences and words in

NXML-texts and marks them with characteristic delimiters that do

not impair the validity of the original XML markup. The ambiguity

of natural language renders the recognition of sentences, words, and

other parts of speech (POS) challenging. An example of a highly

ambiguous grapheme in natural languages is the period. Besides

indicating the end of a sentence, a period can, for example, be a

decimal point or a delimiter within an email address. Specific terms

used in the life sciences pose additional challenges to sentence and

word boundary detection. Articles in this field frequently refer to

chemical substances, abbreviations, or other domain-specific named

entities that are difficult to match to ordinary sentence structures.

We chose to incorporate an existing sentence tagger into the

CitePlag document parser. Approaches to POS tagging comprise

knowledge-based systems, heuristics, or machine learning [34]. The

peculiarities of life science texts force researchers to adjust POS

taggers specifically for this field, in order to achieve a good POS

detection performance.

Several POS taggers exist for the life sciences, e.g. [2, 9, 22, 30].

We evaluated OpenNLP [29] in combination with the biomedical

extensions of [2], StanfordCoreNLP [30], and SPToolkit [22]

regarding their suitability for integration into the CitePlag document

parser. We manually inspected five annotated documents for each

tool. Although our test was too small to be statistically significant,

results seemed to reproduce the precision and recall values of

 for word and sentence boundary detection that earlier studies

reported [2, 22]. OpenNLP and StanfordCoreNLP required ~1.5s,

and SPToolkit required ~30ms of processing time per document in

our tests. We attribute this difference in runtime complexity to the

different approaches of the systems. While OpenNLP and

StanfordCoreNLP employ sophisticated machine learning

procedures, SPToolkit relies on comparably less complicated

heuristic rule sets.

Aside from its superior runtime performance, the sentence detector

of SPToolkit offers an output format that is easier to integrate with

the other sub-components of the document parser than that of

OpenNLP or StanfordCoreNLP. The two later tools can process

XML texts. However, both tools discard the original XML markup

and create individually formatted output files. This tagging behavior

would require changes to the tools’ source codes for producing an

output that includes sentence and word markup in addition to the

original XML tags. SPToolkit provides its output as a plain Java

string object that is universally usable.

We decided to incorporate SPToolkit into the document parser,

because the tested tools have practically identical sentence detection

performance, yet SPToolkit offers both better runtime performance

and a favorable output format. By default, SPToolkit is not able to

process XML texts. Therefore, we substitute all XML tags in the

original documents with unique placeholder strings of the form

Z*§running no./§ and store the tag content in an index for later

re-insertion. After the substitution, the parser runs the sentence

detection procedures of SPToolkit.

SPToolkit misses the functionality of word boundary detection. To

avoid using a runtime-intensive POS tagger based on machine

learning, we adapted and incorporated word markup heuristics that

are common in word split-up tools. We designed the tagger to

markup words with plain text annotations similar to the ones we use

for tagging sentences, so they do not interfere with the original

XML markup. The tagger restores the original markup after the

detection of sentences and words by re-substituting the placeholder

strings with the original tag content from the stored index.

To check the quality of the markup procedure, we randomly

sampled four documents from four journals and inspected the

markup for three paragraphs in each document. For words, we

found 2,092 correctly identified instances, six incorrect separations

and no misses. Five of the six errors originated from one document

that states the names of places and tribes in native African

languages. These words contain unusual combinations of diacritics

and hyphens that caused the word split-up heuristics to fail. The

word markup procedure achieved a precision of 99% and a recall of

100%. The detection for sentences was error-free in our sample.

Overall, we are confident that the implemented markup procedure

works sufficiently accurate.

3.1.2 Data Parser
The data parser extracts all information necessary for a CbPD

analysis from NXML-texts. This task requires evaluating the

original XML markup and the plain text markup for sentences and

words that the SW-Tagger introduced to the documents during the

pre-processing step. The parser must process all documents in their

entirety, because it must read and extract data from all parts of the

corresponding texts. For example, documents generally list

metadata, such as author names and journals, at the beginning of the

text. Citation information occurs throughout the text, while

references occur at the end of the text.

The given extraction task requires sequential read-only parsing of

~234,000 documents. We implemented the Data Parser according to

the Simple API for XML (SAX) [24], because the functionality of

SAX meets the task’s requirements, while offering high processing

speed. The Java programming language offers several frameworks

for XML processing besides SAX, for example, the Java API for

XML Processing (JAXP) or the Streaming API for XML (StAX).

SAX is the most basic, because opposed to the other two

frameworks it imposes strictly sequential reading of documents

without interruption and does not offer functionality for

manipulating documents. The functional restrictions allow SAX to

be very efficient in the use of computational resources, which

results in a high processing speed [32, p. 36].

SAX follows a push approach for accessing data in XML

documents. This means a parser implementing the SAX API reads

and triggers (“pushes”) a notification when it detects one of five

predefined events. Encountering the start or end tag of the whole

document or arbitrary elements represents one event each, thus

totaling four events. The fifth event is the encountering of literal

character data. Only the application that invokes the SAX parser

defines reactions for events that the SAX parser reports. For this

purpose, the invoking application must provide callback handlers to

the SAX parser. These handlers contain and execute programming

logic dependent on the event they receive from the SAX parser.

The content handler (see Figure 4) is the callback handler of the

data parser that extracts document metadata, citations, and

references. For most data elements, such as document IDs, author

names, and references, this extraction is straightforward. Likewise,

citations are easy to parse when the respective NXML text contains

individual tags for every citation.

However, some texts state several citations in an abbreviated

fashion, for example, “[3 – 8]” without offering XML markup for

all citations in the range. To recognize these notations, we

implemented an additional check to see if citations occur within a

range of 13 or less characters. We chose thirteen characters by

assuming that a notation similar to this: “[110] – [115]” is the likely

maximum length of an abbreviated citation range. If citations occur

within the 13-character-interval, the content handler uses regular

expressions to check whether the literal character data between the

citation tags actually represents a citation range.

For keeping track of sentence and word counts, we adapted the

method of the callback handler that reacts to event notifications for

literal character data. We use regular expressions to recognize the

sentence and word markup introduced in the pre-processing step.

After gathering all data for an element, such as a citation or

reference, the content handler submits the element to the database.

We limited the documents in the PMC OAS to articles that have the

document types “research-article”, “review-article”, “case-report”,

“other”, “brief-report” and “report”. We also exclude documents

containing more than one text body or no text body at all. Samples

indicated that documents without a text body are mostly scanned

versions of older articles that only express metadata in NXML.

Documents with multiple text body parts were usually conference

reviews that list summaries of proceeding articles. Both of these

document types are not relevant for a plagiarism analysis. The

exclusions affected ~13,000 documents. The total number of

documents imported to the CitePlag database was 221,220.

3.2 Database
We chose the Open Source Software MySQL for managing

CitePlag’s database. Figure 5 depicts CitePlag's data model in a

special Entity Relationship Model (ERM) notation. This ERM

variant states the data type of attributes in capital letters after their

name. A diamond shape in front of attribute names indicates the

permissibility of null values for that attribute. If the diamond is

unfilled, the attribute can hold null values. A light blue fill for

normal attributes and a red fill for foreign key attributes indicate

that null values are prohibited. Connectors symbolize relationships

and link to those attributes that participate in the relationship from a

technical perspective. The diagram omits relationship names due to

its technical nature.

Entities are documents, authors, citations, references, matching

citation patterns (“CitPatMatches”) and the citations that form the

patterns (“CitPatMembers”). The partition of entities into tables and

the relationships between those tables follow common database

design practices. Most table and attribute names are self-descriptive.

We will explain names that may not be as intuitive.

Figure 5: ER data model for the CitePlag Database

Attributes with the prefix “db” represent CitePlag-internal IDs that

we assigned, while attributes with the prefix “doc” are IDs

contained in the original NXML texts. The attributes

“dbRefAuthKey” and “dbRefTitKey” in the “Reference” table are

keys that we created artificially, based on the author names and the

title of references. We use these keys for approximate reference

matching, in case the document does not state other IDs such as a

PMCID or DOI for the specific reference.

The “proc” attribute in the “CitPatMatch” table identifies the pattern

analysis procedure (see section 3.3.1) that identified the match. The

attribute “length” in the same table states the number of citations

that are part of the match. The attributes “contScore” and

“CFScore” are similarity factors for ranking citation patterns

according to their degree of suspicion (see section 3.3.2).

3.2.1 Consolidation of Reference Identifiers
Documents in the PMC OAS commonly state different document

identifiers such as PMIDs, MEDIDs or DOIs for references.

However, different authors do not use identifiers consistently. For

example, some authors state no identifiers, some use a PMID, others

prefer a DOI or vice versa.

The best possible identification of matching references is a

prerequisite for a CbPD analysis. For this purpose, we consolidated

available document identifiers for references after we imported the

respective data into the CitePlag database. Our aim was to assign all

identifiers that are available for a document in the corpus to all

references that likely point to the respective document. To achieve

this, we had to identify valid relationships between identifiers and

documents.

By visually examining examples from the dataset, we verified that

all document identifiers available for references are subject to a

certain error rate. Examples we found encompassed references with

PMIDs that matched neither the simultaneously given DOIs nor the

documents in general. Human errors or OCR recognition errors are

likely causes for these kinds of erroneous assignments.

For completing or correcting reference records that did not state a

certain identifier or likely stated an incorrect one, we applied the

following procedure.

First, we individually selected all PMIDs, DOIs, MEDIDs and

RefTitKeys.

Second, we took each of these identifiers as a seed for building all

combinations with other identifiers that appear in two or more

documents. For example, when we took PMIDs as the seed, we

selected all pairwise combinations of PMID-DOI, PMID-MEDID,

PMID-RefAuthKey and PMID-RefTitKey that authors had stated

for actual references in at least two different documents. If we

encountered non-unique combinations of identifiers, we chose the

combination that most authors used and ignored all others. By

assuming that the most commonly used combination of e.g. a PMID

and a DOI is likely to be the correct mapping, we consolidated all

ambiguous pairwise mappings of document identifiers to unique

mappings. During this process, we recognized that RefAuthKey is

to error-prone for using it as a seed.

Third, we joined the consolidated pairwise-unique mappings of

document identifiers using the respective seed identifier in the

mappings as the join criterion. This step yielded the following four

combined mappings for the respective seed identifiers.

1 PMID-DOI-MEDID-RefAuthKey-RefTitKey

2 DOI-PMID-MEDID-RefAuthKey-RefTitKey

3 MEDID-PMID-DOI-RefAuthKey-RefTitKey

4 RefTitKey-PMID-DOI MEDID-RefAuthKey

Fourth, we joined the mappings 1 through 4 consecutively in this

order to the table of all references using the respective seed

identifier of the mappings as the join criterion. If reference records

matched one of the mappings in at least one more identifier besides

the seed identifier, which we used for the join, we updated all data

fields of the reference record to equal the mapping. Mapping 4,

which uses the artificially computed RefTitKey as the seed

identifier, is potentially more error-prone than the other mappings.

Therefore, we used mapping 4 only to alter records that do not offer

any other document identifier.

Table 1 displays the availability of document identifiers for

references before and after the consolidation. The table states the

number of references for which the respective type of document

identifier is available. Most frequently, authors state PMIDs when

citing sources, DOIs and MEDIDs follow in second and third rank.

In the table, we count the reference quantities per identifier category

according to the most popular identifier that individual references

offer. If a reference states a PMID and a DOI for example, we count

it for the PMID category only. The table also lists the number of

distinct identifiers from each group in the corpus.

During the consolidation, we could assign a PMID to ~100,000

reference records that did not have one prior to the consolidation.

We were able to reduce the number of references that do not offer

any numeric identifier by ~58,000 records. Additionally, we

reduced the number of distinct PMIDs by ~3,000 and the number of

distinct DOIs by ~17,000. These decreases in distinct identifiers

suggest that we were able to eliminate the respective quantities of

non-unique identifiers.

No. of Ref. No. of dist. IDs No. of Ref. No. of dist. IDs

Total

PMID
5,470,266 2,367,554 5,572,531 2,364,433

no PMID,

DOI 195,359 158,652 192,705 141,357

no PMID, no DOI,

MEDID 84 81 82 79

No identifiers,

authors and title 831,899 655,841 733,183 597,220

No title and/or

authors 423,641 - 422,748 -

6,921,249

Before Consolidation After Consolidation

Table 1: Reference identifier consolidation

3.3 Detector
The detection component performs pairwise comparisons between

citation sequences. The component applies three different pattern

analysis algorithms, which we developed to cover common forms of

plagiarism, and which we will explain in the next sub-section.

3.3.1 Citation Pattern Analysis Algorithms
In [14], we proposed three pattern analysis algorithms for citation

sequences termed Longest Common Citation Sequence, Citation

Tiling and Citation Chunking. This section will provide a summary.

The Longest Common Citation Sequence (LCCS) is an adaption of a

traditional similarity measure for text strings. The LCCS consists of

the maximum number of citations that one can take from a citation

sequence without changing their order, but allows skipping over

non-matching citations. For instance, the sequence (3, 4, 5) is a

subsequence of (2, 3, 1, 4, 6, 8, 5, 9). The LCCS measure

recognizes the order of citations, but offers flexibility to cope with

slight transpositions or gaps of non-matching citations.

Measuring the LCCS yields high similarity scores if a plagiarist

uses longer parts of another text without alterations or only with

minor changes of the source’s citations. These patterns characterize

copy&paste plagiarism that potentially underwent minor

obfuscations such as rewording through synonym replacements.

Greedy Citation Tiling (GCT) is also an adaption of a well-known

similarity measure for text strings, which its inventor specifically

designed for PD purposes [37]. GCT identifies the longest

individual patterns of consecutive, matching citations. The

algorithm permanently links individual longest matches in the

compared citation sequences and stores them as a so-called tile.

GCT focuses on exact matches in the citation sequences. Such

matches are strong indicators for potentially suspicious text

similarity. GCT is able to deal with transpositions in the citation

sequence that result from rearranging longer text segments, which

is typical in shake&paste plagiarism.

Citation Chunking is a set of heuristic procedures that identify local

citation patterns regardless of potential transpositions, i.e.

rearranging citations, or scaling, i.e. using identical citations

multiple times, although the source only stated them once. We

define three strategies for delimiting citation chunks. The first

strategy considers only consecutive matching citations for forming

chunks. The second includes matching citations in a chunk if

or non-matching citations separate it from the last

preceding matching citation. The variable denotes the number of

citations in the chunk under construction. The third strategy

includes citations that occur within a user-defined interval of text.

We believe that the first chunking strategy is likely to reproduce and

detect citation patterns that result from copy&paste plagiarism or

weak paraphrases, which are achieved, for example, through

synonym replacements. The second chunking strategy discovers

shake&paste plagiarism, which results from interweaving text

segments from different sources. When analyzing longer bodies of

text, the third chunking strategy may detect idea plagiarism. After

any of the procedures have delimited citation chunks, they compare

all chunks pairwise while neglecting the order of citations within the

chunks. The number of matching citations is the main similarity

criterion.

Identifying citation patterns is the first of two subtasks in the

citation-based similarity assessment. The second is to rank patterns

according to their likelihood of resulting from undue text usage. We

determined two main factors that increase this likelihood and

derived two corresponding ranking functions to analyze them. We

describe these ranking functions in the next section.

3.3.2 Scoring Functions for Citation Patterns

Citing Frequency-Score (CF-Score)

We regard the citation counts of individual documents in the

collection to be valuable for indicating potentially suspicious

citation patterns. Intuitively, two documents and that both

received, for example, two hundred citations, are more likely to

appear in a matching citation pattern than two documents and

that received three citations each, for example. Therefore, we

consider citation patterns containing highly cited documents to be

less likely a result of undue practices, but rather represent

commonly cited standard literature of a field.

If a document is already highly cited, its likelihood of gathering

additional citations increases. Merton analyzed this phenomenon

and termed it the Matthew effect in science [20]. Over time, highly

cited documents tend to form a body of standard literature in a field.

Authors frequently cite standard literature when providing context

or referring to a base of established knowledge, which is relevant to

their own research. Therefore, standard literature commonly does

not indicate a specific similarity in the content of two works, but

rather a rough topical relatedness of the research in several works.

On the contrary, we regard shared citations to rarely cited sources to

be a comparatively stronger indicator for potentially suspicious

similarities between two works.

To derive a scoring function from this hypothesis, we make the

simplified assumption that authors cite sources independently of

each other. That is, the choice to cite one source does not affect the

choice of citing another. This assumption does not accurately reflect

real citing behavior, because topical similarity of sources, their

academic quality and other factors can influence an author’s choice

of document citations, hence making citations statistically

dependent. Incorporating these complex and interrelated factors into

a model is difficult and beyond the scope of our preliminary

evaluation. Therefore, we assume independent citations to derive a

simplified, and easy to work with approximation of co-occurrence

probability for our current prototype. We plan to devise more

complex and realistic ranking models in the future.

Assuming statistical independence for references, the probability of

a reference pointing to a document equals the count of all

references to in the corpus divided by the corpus size as

follows: ()
| |

. Because rarely cited documents are more

predictive and should receive a higher score, we inverse the ratio of

the probability assessment to equal

| |
. We expect that the value of

more frequently cited sources in predicting uncommon, highly

specific content similarities does not decrease in direct proportion to

the number of citations these sources gather. Therefore, we consider

the square root of the total number of references to a source √| | to

be the denominator for our score.

Because we derive our score from analyzing citing frequencies, we

name it CF-score. The CF-score for a citation that links to a

reference , which represents the source document computes as

 (())

√| |
 .

To compute a CF-score for a citation pattern that consists of

citations that link to references we accumulate the

CF-scores of all citations in the pattern: () ∑ (())

Analogously, we compute the CF-score for a pair of documents

 that share matching citation patterns by accumulating

the CF-scores of the matching patterns: () ∑ ()

 .

To exemplify the computation of CF-scores for ranking citation

patterns, we assume a corpus of documents. In this corpus

four documents and have the following citation counts:
| | | | | | | | . Furthermore, we

imagine two document pairs and that share the following

citation patterns: X,Y: (A,B) (A,C) and X,Z: (CD). The resulting

CF-scores for the document pairs compute as:

 () (()) (()) (())

 (

√

√
) (

√

√
)

 () (()) (

√

√
)

The example shows that although the document pair shares

more citation patterns, the single pattern that document shares

with document scores higher because it consists of comparably

rarely cited sources.

Continuity-Score (Cont.-Score)

The number and proximity of matching citations within shared

citation patterns are major factors that determine the similarity and

the degree of suspicion for individual patterns. Our previous

analysis of real-world plagiarism cases, such as the one of Mr.

Guttenberg [15], consistently confirmed this relationship.

To incorporate this knowledge as part of the CbPD analysis, we

developed a scheme for computing what we call a continuity score

for citation patterns. Based on our experience from prior plagiarism

investigations, we devised the following scoring heuristic that

weighs matching citations higher, if they occur in close proximity.

Within a citation pattern, each matching citation that follows

another matching citation, after three or less intermediate,

non-matching citations have occurred, should increase the

continuity-score of the pattern. The score increase in this case

should be larger than 1 for not reflecting a simple count of matching

citations, which we record separately. Furthermore, the score

increase should be larger if fewer non-matching citations separate

two subsequent matching citations. Lastly, the score should increase

in proportion to the number of previous matching citations that

fulfill the criterion of having a maximum of three intermediate,

non-matching citations separating them from the preceding

matching citation. This characteristic of the function reflects our

observation that the similarity of citation patterns progressively

increases, if longer sequences of matching citations occur in the

pattern. The following formula presents the formal definition of the

continuity-score:

 ∑ ((
) (

))

 {

|

 (
) (

)

 (
) (

)

}

The formula considers a base score for matching citations. For the

first matching citation in the pattern
 , we set the base score to 1.

We increment the base score for each subsequent matching citation

 | in the pattern if less than four non-matching citations

separate
 from the previous matching citation

 . We express

this condition in terms of the sequential position () of citations.

To penalize non-matching citations between matching citations, we

subtract a penalty value of 0.25 for each non-matching citation. If

four or more non-matching citations separate two matching

citations, the base score is set to 1 again. In this case, the summand

would become 0 if four intermitted non-matching citations separate

the matching citations or negative if more than four non-matching

citations exist in between. We chose to disallow the possibility that

the continuity score of a pattern can become less than the count of

matching citations in the pattern. We achieve this behavior through

the application of the () operator, which ensures that the

minimum score increase for each matching citation is 1.

Figure 6 exemplifies the computation of continuity scores for two

citation patterns. In the figure, Arabic numerals represent matching

citations and the letter x symbolizes non-matching citations. In the

example, both citation patterns contain eight matching citations.

This comparatively high number of matching citations allows both

patterns to receive a continuity score that exceeds the length of the

pattern, which equals the count of matching citations. The

continuity score of the second pattern equals about 1.7 times the

score of the first pattern. In this example, the higher score could

signal that the second pattern is more likely to be a comparatively

long match, and hence suspicious. The first pattern is somewhat

likely to represent three smaller matches, which is less suspicious.

786xxxxx132xxx45

Pattern Length = 8 Cont.-Score = 1+2+2.25+4+5+1+2+3 = 20.25

2-0.25∙0 3-0.25∙3 4-0.25∙0 5-0.25∙0 1 2-0.25∙0

87xx6xx1x3x2x45

Pattern Length = 8 Cont-Score = 1+2+2.75+3.75+4.75+5.5+6.5+8 = 34.25

1 3-0.25∙1 4-0.25∙1

1 3-0.25∙0

2-0.25∙0 5-0.25∙1 6-0.25∙2 7-0.25∙2 8-0.25∙0

Figure 6: Cont.-Score computation for citation patterns

3.3.3 Detector Implementation
Figure 7 depicts the main components of the detector using a class

diagram notation of the Unified Modelling Language (UML). We

implemented each pattern analysis algorithm as a stand-alone Java

class. The class “CitationPatternChecker” is a central hub that

instantiates the different analysis classes according to selectable

parameters and bundles functionality, which all pattern analysis

algorithms require, e.g. determining the set of shared references.

The other classes are multi-threaded implementations for subtasks

related to input and output operations on the CitePlag database.

Figure 7: UML class diagram for CitePlag Detector

3.4 Report Generator
Currently, CitePlag only has basic report functionalities due to its

prototypical nature. The CitePlag report generator retrieves

detection results from the CitePlag database and creates plain text

files for every document pair that has matching citation patterns

above a user entered threshold. Figure 8 shows an example report.

Doc1. 59651, Brown: Debate: "How low should LDL

cholesterol be lowered for optimum prevention of

vascular disease?" Viewpoint: "Below 100 mg/dl"

Doc2. 524501, Al Shaer, Choueiri, Suleiman: The pivotal

role of cholesterol absorption inhibitors in the

management of dyslipidemia

Match 1, l= 5

D1, Sec. 1, Sent. 6: [B9] _(0)_ [B10] _(0)_ [B11] _(0)_

[B12] _(0)_ [B13]

D2, Sec. 1, Sent. 9: [B4] _(0)_ [B5] _(0)_ [B6] _(0)_

[B7] _(0)_ [B8]

Match 2, l= 5

D1, Sec. 1, Sent. 6: [B9] _(0)_ [B10] _(0)_ [B11] _(0)_

[B12] _(0)_ [B13]

D2, Sec. 5, Sent. 53: [B4] _(0)_ [B5] _(0)_ [B6] _(0)_

[B7] _(0)_ [B8]

Figure 8: Example results report

Result reports contain the main document metadata (title, authors,

PMCID) for both documents and all matching citation patterns. For

every matching citation pattern, the report states the length of the

match, the section (“Sec.”) and sentence (“Sent.”) of each document

in which the match begins, and the citations that make up the match.

The report lists matching citations enclosed in square brackets using

the citation ID of the original NXML text. Additionally, the report

states the number of non-matching citations that separate matching

citations within a citation pattern enclosed in round brackets.

The report generator includes the overall score for each document

pair as the first characters of the file name for the respective report

file. This naming convention allows us to use the operating system’s

alphabetical file sort for ranking files according to their importance.

4. OUTLOOK
This paper describes the current state of the CitePlag prototype. We

are still in the process of improving and advancing CitePlag’s

functionalities. We publish changes and updates on the project’s

website www.sciplore.org.

The focus of our current research and development is CitePlag’s

document parser and detection module. Regarding the document

parser, we are working on integrating the open-source citation

extraction tool ParsCit. Because ParsCit does not offer sentence and

word detection, we must add this functionality to the tool to make it

suitable for our extraction task. Once the new document parser is in

operation, CitePlag will be able to process PDF files and recognize

numerous citation formats. The improved document parser will

enable us to significantly increase CitePlag’s database, beyond its

current coverage of the PMC OAS.

Improvements of CitePlag’s detection module include a suitable

combination of detection algorithms and consideration of further

similarity factors for the scoring of detected citation patterns.

Through further empirical research on verified plagiarism cases, we

seek to discover more characteristics of citation patterns that can

help to detect suspicious document segments. We will use these

characteristics for constructing a comprehensive citation-based

similarity model.

We are also working on devising additional scoring functions for

ranking citation patterns according to their degree of suspicion. This

is necessary to prevent false positives. Currently, CitePlag considers

scores for citing frequency and continuity of citation patterns (see

section 3.3.2). In the future, we will change the scoring function for

citing frequency to employ Co-Citation Proximity Analysis (CPA)

[12]. CPA is an enhancement of the popular Co-Citation similarity

measure. Co-Citation considers documents as similar if documents

that are more recent cite them together. CPA additionally evaluates

the distance between the citations in the more recent texts. We

showed that considering this additional information improves the

similarity assessment of Co-Citation. Documents have a high CPA

measure if many authors cite them together in close proximity.

Document pairs that fulfill this condition are less suspicious from a

CbPD perspective because they likely represent standard literature.

Decreasing the score of citation patterns in related work sections of

a document is another strategy to reduce the impact of standard

literature on the CbPD assessment. Reducing the score of matching

citation patterns in documents with shared author sets can be

desirable for focusing the analysis on detecting potential plagiarism

instead of potential self-plagiarism. We plan to incorporate scoring

functions that reflect these two strategies.

In the long run, we plan to combine our citation-based detection

algorithms with text-based PD methods. One combination of the

two approaches would be to employ the computationally less

intensive citation-based methods as a preliminary filter to limit the

number of documents subject to a computationally demanding

text-based analysis.

REFERENCES
[1] T. Bretag and S. Mahmud. Self-Plagiarism or Appropriate

Textual Re-use? Journal of Academic Ethics, 7: 193–205,

2009. doi: 10.1007/s10805-009-9092-1.

[2] E. Buyko, J. Wermter, M. Poprat, and U. Hahn.

Automatically Adapting an NLP Core Engine to the Biology

Domain. In Proceedings of the Joint BioLINK-Bio-Ontologies

Meeting, pages 65–68, 2006.

[3] Christian Collberg, Stephen Kobourov, Joshua Louie, and

Thomas Slattery. SPlAT: A System for Self-Plagiarism

Detection. In Proceedings of IADIS International Conference

WWW/INTERNET 2003, pages 5–8, 2003. URL

splat.cs.arizona.edu/icwi_plag.pdf.

[4] P. Clough and M. Stevenson. Creating a corpus of plagiarised

academic texts. In Proceedings of the Corpus Linguistics

Conference 2009, University of Liverpool, UK, July 2009.

URL http://ir.shef.ac.uk/cloughie/papers/CL2009.pdf.

[5] C. Collberg and S. Kobourov. Self-plagiarism in computer

science. Commun. ACM, 48 (4): 88–94, 2005. doi:

10.1145/1053291.1053293.

[6] I. G. Councill, C. L. Giles, and M.-Y. Kan. ParsCit: An open-

source CRF Reference String Parsing Package. In

Proceedings of LREC 2008, number 3, pages 661–667.

European Language Resources Association (ELRA), 2008.

URL http://aye.comp.nus.edu.sg/parsCit/.

[7] M.-Y. Day, R. T.-H. Tsai, C.-L. Sung, C.-C. Hsieh, C.-W.

Lee, S.-H. Wu, K.-P. Wu, C.-S. Ong, and W.-L. Hsu.

Reference Metadata Extraction using a Hierarchical

Knowledge Representation Framework. Decis. Support Syst.,

43: 152–167, February 2007. doi: 10.1016/j.dss.2006.08.006.

URL http://portal.acm.org/citation.cfm?id=1223916.1223947.

[8] Deja Vu. A study of scientific publication ethics. Online

Source, Dec. 2011. Retrieved May 29, 2012 from:

 http://dejavu.vbi.vt.edu/dejavu/.

[9] G. Divita, A. Browne, and R. Loane. dTagger: a POS tagger.

In AMIA 2006 Symposium Proceedings, pages 200–203,

2006.

[10] M. Errami, J. M. Hicks, W. Fisher, D. Trusty, J. D. Wren,

T. C. Long, and H. R. Garner. Déjà vu—A study of duplicate

citations in Medline. Bioinformatics, 24 (2): 243–249, 2008.

doi: 10.1093/bioinformatics/btm574.

[11] M. Errami, Z. Sun, T. C. Long, A. C. George, and H. R.

Garner. Déjà vu: a database of highly similar citations in the

scientific literature. Nucleic Acids Research, 37 (suppl 1):

D921–D924, 2009. doi: 10.1093/nar/gkn546.

[12] B. Gipp and J. Beel. Citation Proximity Analysis (CPA) - A

new approach for identifying related work based on Co-

Citation Analysis. In Proceedings of the 12th International

Conference on Scientometrics and Informetrics (ISSI’09),

volume 2, pages 571–575, Rio de Janeiro (Brazil), July 2009.

International Society for Scientometrics and Informetrics.

Available at: http://sciplore.org/pub.

http://www.sciplore.org/
http://dx.doi.org/10.1007/s10805-009-9092-1
file:///D:/Work/Papers_and_Presentations/2012-07_Plagiarism%20Advice%20-%20CitePlag%20-%20A%20Citation-based%20Plagiarism%20Detection%20System%20Prototype/Plagiarism%20Advice_Prototype%20CbPDS/splat.cs.arizona.edu/icwi_plag.pdf
http://ir.shef.ac.uk/cloughie/papers/CL2009.pdf
http://dx.doi.org/10.1145/1053291.1053293
http://aye.comp.nus.edu.sg/parsCit/
http://dx.doi.org/10.1016/j.dss.2006.08.006
http://portal.acm.org/citation.cfm?id=1223916.1223947
http://dejavu.vbi.vt.edu/dejavu/
http://dx.doi.org/10.1093/bioinformatics/btm574
http://dx.doi.org/10.1093/nar/gkn546
http://sciplore.org/

[13] B. Gipp and J. Beel. Citation Based Plagiarism Detection - A

New Approach to Identify Plagiarized Work Language

Independently. In Proceedings of the 21st ACM Conference

on Hypertext and Hypermedia (HT’10), pages 273–274.

ACM, June 2010. doi: 10.1145/1810617.1810671. Available

at: http://sciplore.org/pub.

[14] B. Gipp and N. Meuschke. Citation Pattern Matching

Algorithms for Citation-based Plagiarism Detection: Greedy

Citation Tiling, Citation Chunking and Longest Common

Citation Sequence. In Proceedings of the 11th ACM

Symposium on Document Engineering (DocEng2011), pages

249–258. ACM New York, NY, USA, September 2011. doi:

10.1145/2034691.2034741. Available at:

 http://sciplore.org/pub.

[15] B. Gipp, N. Meuschke, and J. Beel. Comparative Evaluation

of Text- and Citation-based Plagiarism Detection Approaches

using GuttenPlag. In Proceedings of 11th ACM/IEEE-CS

Joint Conference on Digital Libraries (JCDL’11), pages 255–

258, Ottawa, Canada, June 2011. ACM New York, NY, USA.

doi: 10.1145/1998076.1998124. Available at:

 http://sciplore.org/pub.

[16] HTW Berlin. Portal Plagiat - Softwaretest 2004. Online

Source, 2004. Retrieved May 29, 2012 from: http://-

plagiat.htw-berlin.de/ff-alt/05hilfen/programme.html.

[17] HTW Berlin. Portal Plagiat - Softwaretest 2008. Online

Source, 2008. Retrieved May 29, 2012 from:

 http://plagiat.htw-berlin.de/software/2008/.

[18] HTW Berlin. Portal Plagiat - Softwaretest 2010. Online

Source, 2010. Retrieved May 29, 2012 from:

 http://plagiat.htw-berlin.de/software/2010-2/.

[19] T. C. Long, M. Errami, A. C. George, Z. Sun, and H. R.

Garner. Responding to Possible Plagiarism. Science, 323

(5919): 1293–1294, 2009. doi: 10.1126/science.1167408.

[20] R. K. Merton. The Matthew Effect in Science. Science, 159

(3810): 56–63, January 1968. doi:

10.1126/science.159.3810.56.

[21] A. Pertsemlidis and H. Garner. Engineering in genomics: text

comparison based on dynamic programming. Engineering in

Medicine and Biology Magazine, IEEE, 23 (6): 66 – 71, Nov.-

Dec. 2004. ISSN 0739-5175. doi:

10.1109/MEMB.2004.1378640.

[22] S. Piao and Y. Tsuruoka. A Highly Accurate Sentence and

Paragraph Breaker. Online Source, June 2008. Retrieved Jan.

28, 2011 from: http://text0.mib.man.ac.uk:8080/scottpiao/-

sent_detector.

[23] M. Potthast, B. Stein, A. Barrón Cedeño, and P. Rosso. An

Evaluation Framework for Plagiarism Detection. In

Proceedings of the 23rd International Conference on

Computational Linguistics (COLING 2010), pages 997–1005,

Beijing, China, Aug. 2010. Association for Computational

Linguistics. URL http://www.aclweb.org/anthology/C/C10/-

C10-2115.pdf.

[24] Project SAX. Simple API for XML (SAX). Online Source,

Apr. 2004. Retrieved May 29, 2012 from:

http://www.saxproject.org/.

[25] B. Stein, M. Koppel, and E. Stamatatos. Plagiarism Analysis,

Authorship Identification, and Near-Duplicate Detection

PAN’07. SIGIR Forum, 41 (2): 68–71, December 2007. doi:

10.1145/1328964.1328976.

[26] B. Stein, E. Stamatatos, and M. Koppel, editors. Proceedings

of the ECAI08 Workshop on Uncovering Plagiarism,

Authorship and Social Software Misuse, Patras, Greece, July

22, 2008, volume 377 of CEUR Workshop Proceedings,

2008. CEUR-WS.org. URL http://sunsite.informatik.rwth-

aachen.de/Publications/CEUR-WS/Vol-377/pan08-

proceedings.pdf.

[27] B. Stein, P. Rosso, E. Stamatatos, M. Koppel, and A. Eneko,

editors. Proceedings of the 3rd PAN Workshop. Uncovering

Plagiarism, Authorship and Social Software Misuse, 2009.

URL http://ftp.informatik.rwth-aachen.de/Publications/-

CEUR-WS/Vol-502/pan09-proceedings.pdf.

[28] Z. Sun, M. Errami, T. Long, C. Renard, N. Choradia, and

H. Garner. Systematic Characterizations of Text Similarity in

Full Text Biomedical Publications. PLoS ONE, 5 (9): e12704,

Sept. 2010. doi: 10.1371/journal.pone.0012704.

[29] The Apache Software Foundation. Apache OpenNLP. Online

Source, 2010. Retrieved May 29, 2012 from:

 http://incubator.apache.org/opennlp/.

[30] The Stanford Natural Language Processing Group . Stanford

CoreNLP - A Suite of Core NLP Tools. Online Source, Nov.

2010. Retrieved May 29, 2012 from:

 http://nlp.stanford.edu/software/corenlp.shtml.

[31] U.S. National Library of Medicine. Journal Archiving and

Interchange Tag Suite. Online Source, Nov. 2008. Retrieved

May 29, 2012 from: http://dtd.nlm.nih.gov/.

[32] A. Vohra and D. Vohra. Pro XML Development with Java

Technology. Apress, Berkely, CA, USA, 2006. ISBN

1590597060.

[33] VroniPlag Wiki. Vroniplag - collaborative documentation of

plagiarism. Online Source, Apr. 2012. Retrieved May 29,

2012 from: http://de.vroniplag.wikia.com.

[34] D. Walker, D. Clements, D. Maki, and J. Amtrup. Sentence

boundary detection: A comparison of paradigms for

improving MT quality. In MT Summit Proceedings VIII,

2001.

[35] D. Weber Wulff. Test cases for plagiarism detection software.

In Proceedings of the 4th International Plagiarism

Conference, Newcastle Upon Tyne, 2010. URL http://-

www.plagiarismadvice.org/documents/conference2010/-

papers/4IPC_0017_final.pdf.

[36] Webis Group, University Weimar. PAN 2011 Lab -

Uncovering Plagiarism, Authorship, and Social Software

Misuse. Online Source, 2011. Retrieved May 29, 2012 from:

http://pan.webis.de/.

[37] M. J. Wise. String Similarity via Greedy String Tiling and

Running Karp-Rabin Matching. Online Preprint, Dec. 1993.

Retrieved May 29, 2012 from:

 http://vernix.org/marcel/share/RKR_GST.ps.

http://dx.doi.org/10.1145/1810617.1810671
http://sciplore.org/pub
http://dx.doi.org/10.1145/2034691.2034741
http://sciplore.org/pub
http://dx.doi.org/10.1145/1998076.1998124
http://sciplore.org/pub
http://plagiat.htw-berlin.de/ff-alt/05hilfen/programme.html
http://plagiat.htw-berlin.de/ff-alt/05hilfen/programme.html
http://plagiat.htw-berlin.de/software/2008/
http://plagiat.htw-berlin.de/software/2010-2/
http://dx.doi.org/10.1126/science.1167408
http://dx.doi.org/10.1126/science.159.3810.56
http://dx.doi.org/10.1109/MEMB.2004.1378640
http://text0.mib.man.ac.uk:8080/scottpiao/sent_detector
http://text0.mib.man.ac.uk:8080/scottpiao/sent_detector
http://www.aclweb.org/anthology/C/C10/C10-2115.pdf
http://www.aclweb.org/anthology/C/C10/C10-2115.pdf
http://www.saxproject.org/
http://dx.doi.org/10.1145/1328964.1328976
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-377/pan08-proceedings.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-377/pan08-proceedings.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-377/pan08-proceedings.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-502/pan09-proceedings.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-502/pan09-proceedings.pdf
http://dx.doi.org/10.1371/journal.pone.0012704
http://incubator.apache.org/opennlp/
http://nlp.stanford.edu/software/corenlp.shtml
http://dtd.nlm.nih.gov/
http://de.vroniplag.wikia.com/
http://www.plagiarismadvice.org/documents/conference2010/papers/4IPC_0017_final.pdf
http://www.plagiarismadvice.org/documents/conference2010/papers/4IPC_0017_final.pdf
http://www.plagiarismadvice.org/documents/conference2010/papers/4IPC_0017_final.pdf
http://pan.webis.de/
http://vernix.org/marcel/share/RKR_GST.ps

Meuschke, N. & Gipp, B. & Breitinger, C., “CitePlag: A Citation-based Plagiarism

Detection System Prototype,” in Proceedings of the 5th International Plagiarism

Conference, 2012, DOI: 10.5281/zenodo.3483088.

@inproceedings{Meuschke2012,

 title = {{{CitePlag}}: {{A Citation}}-Based {{Plagiarism Detection System

Prototype}}},

 booktitle = {Proceedings of the 5th {{International Plagiarism Conference}}},

 doi = {10.5281/zenodo.3483088},

 author = {Meuschke, Norman and Gipp, Bela and Breitinger, Corinna},

 year = {2012}

}

RIS:

 TY - CONF

 TI - CitePlag: A Citation-based Plagiarism Detection System Prototype

 AU - Meuschke, Norman

 AU - Gipp, Bela

 AU - Breitinger, Corinna

 C3 - Proceedings of the 5th International Plagiarism Conference

 PY - 2012

 ER -

https://doi.org/10.5281/zenodo.3483088
https://doi.org/10.5281/zenodo.3483088
http://www.gipp.com/pub
http://www.gipp.com/pub

	pap
	meuschke12

	Meuschke2012_CitePlag

