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ABSTRACT 
This paper presents an open-source prototype of a citation-based 

plagiarism detection system called CitePlag. The underlying idea of 

the system is to evaluate the citations of academic documents as 

language independent markers to detect plagiarism. CitePlag uses 

three different detection algorithms that analyze the citation 

sequence of academic documents for similar patterns that may 

indicate unduly used foreign text or ideas. The algorithms consider 

multiple citation-related factors such as proximity and order of 

citations within the text, or their probability of co-occurrence in 

order to compute document similarity scores. We present technical 

details of CitePlag’s detection algorithms and the acquisition of test 

data from the PubMed Central Open Access Subset. Future 

advancement of the prototype lies in increasing the reference 

database by enabling the system to process more document and 

citation formats. Improving CitePlag’s detection algorithms and 

scoring functions to reduce the number of false positives is another 

major goal. Eventually, we plan to integrate text-based detection 

algorithms in addition to the citation-based detection algorithms 

within CitePlag. 
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1. INTRODUCTION
Studies show that existing plagiarism detection systems (PDS) can 

accurately identify copies or modestly obfuscated plagiarism. 

Strongly reworded paraphrases, translations, and idea plagiarism, 

however, lack the lexical text similarities that existing PDS require 

to discover plagiarism. Therefore, current PDS always almost fail to 

detect these plagiarism forms [16, 17, 18, 25, 26, 27, 36]. 

For academic texts, citation pattern analysis allows us to assess 

document similarity independent of lexical text matches. We define 

citation patterns as sequences of citations in two texts,   and  , 

which partially or entirely link to shared references of   and  . We 

use the term “citation” for referring to strings in the body of 

academic texts that link to sources in the bibliography and 
“references” for denoting entries in the bibliography. Figure 1 
shows the concept of citation pattern analysis. 

Citation pattern analysis evaluates the number of shared citations, 

their order of appearance, their proximity to each other in the text, 

and their probability of co-occurrence for computing a document 

similarity score. We approximate the co-occurrence probability of 

citations based on their usage frequencies within the collection [14]. 

Plagiarism detection (PD) is one possible application of citation 

pattern analysis. The approach can also serve other information 

retrieval tasks, such as recommending related literature. We use the 

term citation-based plagiarism detection (CbPD) for distinguishing 

the application of citation pattern analysis for PD purposes. 
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Section 1
This is an example text with references to different documents for illustrating 
the usage of citation analysis for plagiarism detection. This is an example text 
with references to different documents for illustrating the usage of citation 
analysis for plagiarism detection. 
This is a in-text citation [1]. This is an example text with references to different 
documents for illustrating the usage of citation analysis for plagiarism 
detection. This is an example text with references to different documents for 

illustrating the usage of citation analysis for plagiarism detection. 

Section 2
Another in-text citation [2]. tThis is an example text with references to 
different documents for illustrating the usage of citation analysis for plagiarism 
detection. This is an example text with references to different documents for 
illustrating the usage of citation analysis for plagiarism detection. This is a 
repeated in-text citation [1]. 
This is an example text with references to different documents for illustrating 
the usage of citation analysis for plagiarism detection. This is an example text 
with references to different documents for illustrating the usage of citation 
analysis for plagiarism detection. 

Setion 3
A third in-text citation [3]. This is an example text with references to different 
documents for illustrating the usage of citation analysis for plagiarism 
detection. This is an example text with references to different documents for 
illustrating the usage of citation analysis for plagiarism detection. a final in-
text-citation[2].
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Document B

This is an example text with references to different documents for illustrating 
the usage of citation analysis for plagiarism detection. This is a in-text citation 
[1]. This is an example text with references to different documents for 
illustrating the usage of citation analysis for plagiarism detection. Another 
example for an in-text citation [2]. 

This is an example text with references to different documents for illustrating 
the usage of citation analysis for plagiarism detection. 

This is an example text with references to different documents for illustrating 
the usage of citation analysis for plagiarism detection. This is an example text 
with references to different documents for illustrating the usage of citation 
analysis for plagiarism detection. This is an example text with references to 
different documents for illustrating the usage of citation analysis for plagiarism 
detection. 

This is an example text with references to different documents for illustrating 
the usage of citation analysis for plagiarism detection. This is an example text 
with references to different documents for illustrating the usage of citation 
analysis for plagiarism detection. Here’s a third in-text citation [3]. This is an 
example text with references to different documents for illustrating the usage of 
citation analysis for plagiarism detection. 

This is an example text with references to different documents for illustrating 
the usage of citation analysis for plagiarism detection. 
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Figure 1: Concept of citation pattern analysis

To allow for a CbPD analysis, the suspicious documents and the 

documents in the reference collection must possess the required 

input data for a citation pattern analysis. The requirements on input 

data are twofold.  

First, the documents must contain citations within their accessible 

full text, because, knowing the position of citations within the text is 

crucial for identifying citation patterns. 

Second, accurate citation information must be obtainable for 

identifying matching citations between documents. If this data is not 

readily accessible, tools able to extract citation information from the 

original documents must be applicable to the collection. This second 

requirement is of importance because citation extraction tools can 

only interpret a fraction of the many style conventions that exist for 

citing sources in academic texts. Depending on the citation style of 

an academic field, the data to include in citation and reference 

strings, as well as its order, and formatting varies. Tools for 

automated citation and reference extraction are either knowledge- or 

rule-based or employ machine learning [7]. To achieve good 

recognition performance, a tool’s system of rules or its training set 

must be tailored to specific citation styles.  

In prior studies, we demonstrated that the CbPD concept is a 

valuable enhancement, not a substitution, to existing text-based PD 

approaches [13, 15]. CbPD can partially identify forms of 

plagiarism that existing PDS cannot detect. For example, CbPD 

identified 13 of 16 translated plagiarisms in the dissertation of Mr. 

Guttenberg, Germany’s former minister of defense [15].  

The setups of these earlier studies were limited and did not entirely 

reflect real-world PD scenarios. In [15], we conducted the 

citation-based plagiarism check subsequent to the manual 

verification of plagiarism in Guttenberg’s thesis and limited the 

reference collection to proven sources of plagiarism. Furthermore, 

the uncommon citation formats of the analyzed documents, which 
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originate from the legal domain, prevented a fully automated 

citation extraction and required manual rework. In [13], we 

artificially plagiarized documents and inserted them into the test 

collection. The goal of our current research is a large-scale 

evaluation of our citation-based PDS prototype. 

The requirements for a CbPD analysis restrain us from using 

existing collections for testing CitePlag and comparing it to 

text-based PDS. Although test collections containing verified cases 

of plagiarism exist from prior PDS comparisons, e.g. [4, 23, 35], 

none of these collections offers academic full texts that include 

citations and references. Given the unsuitability of existing test 

collections, we chose the PubMed Central Open Access Subset 

(PMC OAS) for implementing a prototype that can analyze a large, 

real-world document collection. 

We will not present the individual similarities we detected in the 

PMC OAS in this paper, because we are convinced no suspicion of 

potential academic misconduct should be expressed prior to a 

thorough expert investigation. Only domain experts can fully 

comprehend and judge the scientific contribution of certain works, 

especially, since the understanding of what constitutes undue 

publication behavior and/or self-plagiarism varies between 

academic fields [1, 3, 5]. Experts often require many weeks, even 

months, to properly analyze plagiarism allegations. The recent 

investigations into more than 20 alleged plagiarism offenses, mainly 

involving German politicians, made clear this immense time 

commitment [33].  

During plagiarism investigations, affected authors must have the 

opportunity to make their opinion heard, since suspicious 

similarities between documents sometimes occur without any 

wrongdoing of authors. We construct a fictitious, yet possible 

scenario to illustrate this necessity. Imagine an accidental omission 

of an author name on a journal article written by several authors. 

Parts of the journal article may be legitimately similar to a previous 

conference article of the omitted author. A PDS may flag the journal 

article as being suspiciously similar to the conference article. The 

accidentally omitted author name may cause a reviewer to suspect 

plagiarism. Giving authors the opportunity to comment on findings 

before making public any allegations is thus a simple way to 

prevent undue and unwarranted damage to the reputation of authors. 

We are not experts in the life sciences and are therefore more likely 

to fail in appropriately classifying detected similarities in the PMC 

OAS. Furthermore, we are unable to perform careful investigations, 

especially because we compare all ~234,000 documents the PMC 

OAS to all other documents in the corpus. 

Any automated PD procedure is subject to an error rate that can 

cause false positives. For CbPD, the main sources of error are the 

extraction and disambiguation of citation and reference data from 

within the text. Currently, CitePlag is a PDS prototype. Major 

functionalities of CitePlag, such as the document import and the 

detection process (see section 3) are the focus of our current 

research and subject to continuous enhance- and improvement. 

Therefore, we advise users of the system to treat its detection results 

with an appropriate skepticism. 

This paper is a research-in-progress report rather than a final 

description and evaluation of CitePlag. We demonstrated the 

capabilities of CbPD using the Guttenberg plagiarism case verified 

by experts prior to the current study [15]. This paper presents the 

current state of the prototype, which we make freely available under 

an open-source license. Please consult the CbPD project website at 

www.sciplore.org for latest technical details about CitePlag, source 

code download, and related information. By offering CitePlag as an 

open-source system, we invite everyone who is interested, to 

analyze the PMC OAS and draw his or her own conclusions from 

the indicated similarities. 

The structure of this report is as follows. Section 2 introduces the 

PubMed Central Open Access Subset. Section 3 presents technical 

details of the CitePlag prototype, while section 4 outlines future 

research concerning the CbPD approach and the CitePlag prototype. 

2. PUBMED CENTRAL OA SUBSET 
The PMC OAS comprises ~234,000 Open Access full-text articles 

from the life sciences. Citation and reference data for articles is 

available in XML format, which simplifies data extraction.  

The U.S. National Center for Biotechnology Information (NCBI), a 

subunit of the U.S. National Library of Medicine (NLM), provides 

the PMC OAS together with numerous other information systems. 

Figure 2 presents an overview of systems and data sources and their 

relation to the PMC OAS. This overview will clarify some technical 

terminology used in section 3. 
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Figure 2: Information systems related to the PMC OAS 

MEDLINE® is a comprehensive index of ~19M articles from 

~5,600 peer-reviewed journals in the life sciences. MEDLINE does 

not offer full texts, but it provides structured records of 

bibliographic data. PubMed® is an information system that offers 

free access to MEDLINE records, and additional content such as 

articles outside of MEDLINE’s scope. PubMed comprises ~21M 

records for which it lists outgoing links to full text sources if 

available. Most records in PubMed Central® (PMC) are also part of 

MEDLINE and/or PubMed. PMC offers additional content that 

does not necessarily meet the formal criteria for being included in 

MEDLINE or PubMed, such as editorial letters, comments, book 

reviews, conference summaries and non-journal manuscripts. 

The NLM and NCBI assign system-wide unique, numerical IDs to 

records upon inclusion in MEDLINE, PubMed, or PMC. We will 

refer to these IDs as MEDID for MEDLINE, PMID for PubMed 

and PMCID for PMC entry keys.   

2.1.1 The PMC OAS in Prior PD Studies  
In an earlier study, researchers from the Garner Lab analyzed a 

subset of ~72,000 articles from the PMC OAS using their 

self-developed, text-based similarity algorithm eTBLAST [28]. 

http://www.sciplore.org/


eTBLAST is an adaption of biomedical sequence alignment 

algorithms to text [21]. The Garner Lab group could not identify 

cases of plagiarism in texts originating from the PMC OAS. 

In comparable examinations, the same research group used 

eTBLAST to check abstracts of research articles contained in 

MEDLINE records for suspicious similarities [10, 11, 19]. During 

these studies, the team manually acquired and checked 4,515 full 

texts for articles with highly similar abstracts. Investigating these 

articles yielded 252 documents with a full text similarity score 

above 50% and non-shared author sets, which made them likely 

candidates for plagiarism. An additional 89 cases with the same 

similarity criteria had common authors, making them likely 

self-plagiarisms. The Garner Lab published the results of all studies 

in a database called Déjà vu [8]. Data in Déjà vu is openly 

accessible via a web front-end and is available for bulk download. 

The Garner Lab team stated three possible reasons for the apparent 

absence of plagiarism in the PMC OAS. First, the researchers only 

manually checked 34 highly similar full-text article pairs. Second, 

the team analyzed less full texts from the PMC OAS than 

MEDLINE abstracts. Third, the group found that plagiarized works 

appear more often in journals with low impact factors, possibly 

because the plagiarists intended to reduce the risk of discovery by 

publishing in less popular journals. However, the PMC OAS covers 

mostly high-impact journals [28].  

We hypothesize that plagiarism is more strongly obfuscated in high 

impact journals like those covered by the PMC OAS to avoid 

detection. Furthermore, we assume that such strongly disguised 

cases of plagiarism are much harder to detect than, for example, 

plagiarism committed by students. If these assumptions prove true, 

this provides another reason the Garner Lab PDS could not detect 

any plagiarized articles. Therefore, analyzing the PMC OAS with a 

citation-based PD approach appears promising to test whether 

CbPD can identify strongly obfuscated plagiarism. 

2.1.2 PMC OAS Document Format 
For including articles in PubMed Central, the NCBI requires content 

providers to submit texts in Extensible Markup Language (XML) 

and in conformance with a Document Type Definition (DTD) called 

the Journal Archiving and Interchange Tag Suite (JAITS) [31]. We 

refer to JAITS-conformant documents as NXML-texts because they 

carry the file extension .nxml. Content providers, mainly 

professional publishers, can additionally include articles as a PDF. 

We expect the obligation of content providers to supply 

JAITS-conformant texts to increase the accuracy of citation and 

reference data. Publishers commonly impose predefined formatting 

rules on documents to be included in their volumes. We assume that 

most publishers providing articles to PMC use automated tools for 

the conversion of texts to the NXML format. It is likely that 

publishers incorporate this knowledge about specific formatting 

conventions into knowledge- or rule-based citation extraction tools. 

The precision and recall of such customized citation extraction tools 

are likely to be higher than for unspecialized tools. 

The JAITS DTD provides markup for most document data that is 

necessary for a CbPD analysis. Metadata required for CbPD, such 

as: authors, title, publication dates, identifiers (IDs) and the 

partitioning of documents into sections, subsections and paragraphs 

is marked-up in NXML-texts. The DTD also enforces markup and 

linkage of citations and references in the NXML-texts. The 

availability of IDs facilitates the identification of shared references 

between articles.  

The JAITS DTD does not provide markup for sentence and word 

boundaries. However, our CbPD algorithms require this information 

to analyze how many characters, words or sentences separate 

individual citations in the text for computing a similarity score. 

Section 3.1 describes details about how the CitePlag prototype 

acquires this information from NXML-texts. 

In summary, the major advantages that made us choose the PMC 

OAS as a collection for demonstrating CitePlag are: 

- the inclusion of high quality journal articles; 

- the XML markup of most information we require;  

- the accuracy of citation and reference data;  

- the wide availability of IDs for documents and references;  

- the partial analysis by a prior text-based PD study. 

3. CITEPLAG PROTOTYPE 
CitePlag is an Open Source prototype of a citation-based PDS 

developed in Java. We provide CitePlag for download at 

www.sciplore.org. 

 

Figure 3 illustrates CitePlag’s system architecture, which consists of 

four components - the parser, the database, the detector, and the 

report generator. The parser extracts bibliographic data, such as 

citations, references, authors, and titles from documents and stores it 

in the database. The relational database provides this document data 

to the detector. The detector runs the analysis algorithms and feeds 

the results back to the database for storage. The report generator 

retrieves detection results from the database and summarizes them 

for human inspection. The following subsections present the four 

main components in more detail. 
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Figure 3: CitePlag system architecture 

3.1 Document Parser 
The document parser’s task is to extract all necessary meta-, 

citation- and reference data from input documents and import it into 

the database. We fitted the parser of the current prototype to the 

PMC OAS. Therefore, the current version of CitePlag available for 

download is only able to process NXML-texts. In the future, we 

plan to replace the prototypic parser with a component that uses the 

open-source citation extraction tool ParsCit [6]. The future version 

of the parsers will be able to process more citation styles and 

document formats, e.g. PDF files. 

A major subtask in parsing is determining the exact positions of 

citations within the document’s full text. The detection process of 

similar citation patterns requires knowing the exact position of 

citations in the text. We measure this position in terms of the 

character, word, sentence, paragraph, and section count where 

citations appear. The parser applies standard Java text processing 

methods for acquiring character counts and evaluates the 



corresponding tags in the NXML-texts for obtaining the paragraph 

and section position of citations. NXML-texts do not provide 

markup for sentences and words. Hence, identifying the boundaries 

of these elements requires pre-processing prior to data extraction.  

The goal of the pre-processing step is to include delimiters for 

sentences and words without compromising the existing XML 

markup. For performing this task, we developed an independent 

sub-component to the parser, the Sentence-Word-Tagger 

(SW-Tagger). After the SW-Tagger has identified sentence and 

word boundaries, a second sub-component, the Data Parser, extracts 

all relevant data and imports it into the database. Figure 4 illustrates 

the two-stage parsing process of the CitePlag document parser. The 

following two subsections describe the SW-Tagger and the Data 

Parser in more detail. 

PMC 
Doc.

<xml>       
</xml>

SW-Tagger

Sentence and Word Markup:
1. Substitution of  XML markup (placeholders)
2. Invocation of SPToolkit
3. Word markup based on regular expressions
4. Reinsertion of original XML markup   

Tagged 
Doc.

<xml>    
</xml>

SPToolkit

Data Parser

Recognition and Import of Document Data:
1. Invocation of SAX parser and content handler 
2. Customized content handler recognizes NXML 

tags and the markup of SW-Tagger 
3. Database update through JDBC

SAX Paser

Content 
Handler

CitePlag
Database

CitePlag Document Parser
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Figure 4: Two-stage parsing process for NXML-documents 

3.1.1 Sentence-Word-Tagger (SW-Tagger) 
SW-Tagger identifies individual sentences and words in 

NXML-texts and marks them with characteristic delimiters that do 

not impair the validity of the original XML markup. The ambiguity 

of natural language renders the recognition of sentences, words, and 

other parts of speech (POS) challenging. An example of a highly 

ambiguous grapheme in natural languages is the period. Besides 

indicating the end of a sentence, a period can, for example, be a 

decimal point or a delimiter within an email address. Specific terms 

used in the life sciences pose additional challenges to sentence and 

word boundary detection. Articles in this field frequently refer to 

chemical substances, abbreviations, or other domain-specific named 

entities that are difficult to match to ordinary sentence structures.  

We chose to incorporate an existing sentence tagger into the 

CitePlag document parser. Approaches to POS tagging comprise 

knowledge-based systems, heuristics, or machine learning [34]. The 

peculiarities of life science texts force researchers to adjust POS 

taggers specifically for this field, in order to achieve a good POS 

detection performance.  

Several POS taggers exist for the life sciences, e.g. [2, 9, 22, 30]. 

We evaluated OpenNLP [29] in combination with the biomedical 

extensions of [2], StanfordCoreNLP [30], and SPToolkit [22] 

regarding their suitability for integration into the CitePlag document 

parser. We manually inspected five annotated documents for each 

tool. Although our test was too small to be statistically significant, 

results seemed to reproduce the precision and recall values of 

     for word and sentence boundary detection that earlier studies 

reported [2, 22]. OpenNLP and StanfordCoreNLP required ~1.5s, 

and SPToolkit required ~30ms of processing time per document in 

our tests. We attribute this difference in runtime complexity to the 

different approaches of the systems. While OpenNLP and 

StanfordCoreNLP employ sophisticated machine learning 

procedures, SPToolkit relies on comparably less complicated 

heuristic rule sets. 

Aside from its superior runtime performance, the sentence detector 

of SPToolkit offers an output format that is easier to integrate with 

the other sub-components of the document parser than that of 

OpenNLP or StanfordCoreNLP. The two later tools can process 

XML texts. However, both tools discard the original XML markup 

and create individually formatted output files. This tagging behavior 

would require changes to the tools’ source codes for producing an 

output that includes sentence and word markup in addition to the 

original XML tags. SPToolkit provides its output as a plain Java 

string object that is universally usable. 

We decided to incorporate SPToolkit into the document parser, 

because the tested tools have practically identical sentence detection 

performance, yet SPToolkit offers both better runtime performance 

and a favorable output format. By default, SPToolkit is not able to 

process XML texts. Therefore, we substitute all XML tags in the 

original documents with unique placeholder strings of the form 

Z\*§running no./§ and store the tag content in an index for later 

re-insertion. After the substitution, the parser runs the sentence 

detection procedures of SPToolkit. 

SPToolkit misses the functionality of word boundary detection. To 

avoid using a runtime-intensive POS tagger based on machine 

learning, we adapted and incorporated word markup heuristics that 

are common in word split-up tools. We designed the tagger to 

markup words with plain text annotations similar to the ones we use 

for tagging sentences, so they do not interfere with the original 

XML markup. The tagger restores the original markup after the 

detection of sentences and words by re-substituting the placeholder 

strings with the original tag content from the stored index. 

To check the quality of the markup procedure, we randomly 

sampled four documents from four journals and inspected the 

markup for three paragraphs in each document. For words, we 

found 2,092 correctly identified instances, six incorrect separations 

and no misses. Five of the six errors originated from one document 

that states the names of places and tribes in native African 

languages. These words contain unusual combinations of diacritics 

and hyphens that caused the word split-up heuristics to fail. The 

word markup procedure achieved a precision of 99% and a recall of 

100%. The detection for sentences was error-free in our sample. 

Overall, we are confident that the implemented markup procedure 

works sufficiently accurate. 

3.1.2 Data Parser 
The data parser extracts all information necessary for a CbPD 

analysis from NXML-texts. This task requires evaluating the 

original XML markup and the plain text markup for sentences and 

words that the SW-Tagger introduced to the documents during the 

pre-processing step. The parser must process all documents in their 

entirety, because it must read and extract data from all parts of the 

corresponding texts. For example, documents generally list 

metadata, such as author names and journals, at the beginning of the 

text. Citation information occurs throughout the text, while 

references occur at the end of the text.  

The given extraction task requires sequential read-only parsing of 

~234,000 documents. We implemented the Data Parser according to 

the Simple API for XML (SAX) [24], because the functionality of 



SAX meets the task’s requirements, while offering high processing 

speed. The Java programming language offers several frameworks 

for XML processing besides SAX, for example, the Java API for 

XML Processing (JAXP) or the Streaming API for XML (StAX). 

SAX is the most basic, because opposed to the other two 

frameworks it imposes strictly sequential reading of documents 

without interruption and does not offer functionality for 

manipulating documents. The functional restrictions allow SAX to 

be very efficient in the use of computational resources, which 

results in a high processing speed [32, p. 36].  

SAX follows a push approach for accessing data in XML 

documents. This means a parser implementing the SAX API reads 

and triggers (“pushes”) a notification when it detects one of five 

predefined events. Encountering the start or end tag of the whole 

document or arbitrary elements represents one event each, thus 

totaling four events. The fifth event is the encountering of literal 

character data. Only the application that invokes the SAX parser 

defines reactions for events that the SAX parser reports. For this 

purpose, the invoking application must provide callback handlers to 

the SAX parser. These handlers contain and execute programming 

logic dependent on the event they receive from the SAX parser.  

The content handler (see Figure 4) is the callback handler of the 

data parser that extracts document metadata, citations, and 

references. For most data elements, such as document IDs, author 

names, and references, this extraction is straightforward. Likewise, 

citations are easy to parse when the respective NXML text contains 

individual tags for every citation.  

However, some texts state several citations in an abbreviated 

fashion, for example, “[3 – 8]” without offering XML markup for 

all citations in the range. To recognize these notations, we 

implemented an additional check to see if citations occur within a 

range of 13 or less characters. We chose thirteen characters by 

assuming that a notation similar to this: “[110] – [115]” is the likely 

maximum length of an abbreviated citation range. If citations occur 

within the 13-character-interval, the content handler uses regular 

expressions to check whether the literal character data between the 

citation tags actually represents a citation range. 

For keeping track of sentence and word counts, we adapted the 

method of the callback handler that reacts to event notifications for 

literal character data. We use regular expressions to recognize the 

sentence and word markup introduced in the pre-processing step. 

After gathering all data for an element, such as a citation or 

reference, the content handler submits the element to the database. 

We limited the documents in the PMC OAS to articles that have the 

document types “research-article”, “review-article”, “case-report”, 

“other”, “brief-report” and “report”. We also exclude documents 

containing more than one text body or no text body at all. Samples 

indicated that documents without a text body are mostly scanned 

versions of older articles that only express metadata in NXML. 

Documents with multiple text body parts were usually conference 

reviews that list summaries of proceeding articles. Both of these 

document types are not relevant for a plagiarism analysis. The 

exclusions affected ~13,000 documents. The total number of 

documents imported to the CitePlag database was 221,220. 

3.2 Database 
We chose the Open Source Software MySQL for managing 

CitePlag’s database. Figure 5 depicts CitePlag's data model in a 

special Entity Relationship Model (ERM) notation. This ERM 

variant states the data type of attributes in capital letters after their 

name. A diamond shape in front of attribute names indicates the 

permissibility of null values for that attribute. If the diamond is 

unfilled, the attribute can hold null values. A light blue fill for 

normal attributes and a red fill for foreign key attributes indicate 

that null values are prohibited. Connectors symbolize relationships 

and link to those attributes that participate in the relationship from a 

technical perspective. The diagram omits relationship names due to 

its technical nature.  

Entities are documents, authors, citations, references, matching 

citation patterns (“CitPatMatches”) and the citations that form the 

patterns (“CitPatMembers”). The partition of entities into tables and 

the relationships between those tables follow common database 

design practices. Most table and attribute names are self-descriptive. 

We will explain names that may not be as intuitive.  

 

Figure 5: ER data model for the CitePlag Database 

Attributes with the prefix “db” represent CitePlag-internal IDs that 

we assigned, while attributes with the prefix “doc” are IDs 

contained in the original NXML texts. The attributes 

“dbRefAuthKey” and “dbRefTitKey” in the “Reference” table are 

keys that we created artificially, based on the author names and the 

title of references. We use these keys for approximate reference 

matching, in case the document does not state other IDs such as a 

PMCID or DOI for the specific reference.  

The “proc” attribute in the “CitPatMatch” table identifies the pattern 

analysis procedure (see section 3.3.1) that identified the match. The 

attribute “length” in the same table states the number of citations 

that are part of the match. The attributes “contScore” and 

“CFScore” are similarity factors for ranking citation patterns 

according to their degree of suspicion (see section 3.3.2).   

3.2.1 Consolidation of Reference Identifiers 
Documents in the PMC OAS commonly state different document 

identifiers such as PMIDs, MEDIDs or DOIs for references. 

However, different authors do not use identifiers consistently. For 

example, some authors state no identifiers, some use a PMID, others 

prefer a DOI or vice versa. 

The best possible identification of matching references is a 

prerequisite for a CbPD analysis. For this purpose, we consolidated 

available document identifiers for references after we imported the 

respective data into the CitePlag database. Our aim was to assign all 

identifiers that are available for a document in the corpus to all 



references that likely point to the respective document. To achieve 

this, we had to identify valid relationships between identifiers and 

documents. 

By visually examining examples from the dataset, we verified that 

all document identifiers available for references are subject to a 

certain error rate. Examples we found encompassed references with 

PMIDs that matched neither the simultaneously given DOIs nor the 

documents in general. Human errors or OCR recognition errors are 

likely causes for these kinds of erroneous assignments.  

For completing or correcting reference records that did not state a 

certain identifier or likely stated an incorrect one, we applied the 

following procedure.  

First, we individually selected all PMIDs, DOIs, MEDIDs and 

RefTitKeys.  

Second, we took each of these identifiers as a seed for building all 

combinations with other identifiers that appear in two or more 

documents. For example, when we took PMIDs as the seed, we 

selected all pairwise combinations of PMID-DOI, PMID-MEDID, 

PMID-RefAuthKey and PMID-RefTitKey that authors had stated 

for actual references in at least two different documents. If we 

encountered non-unique combinations of identifiers, we chose the 

combination that most authors used and ignored all others. By 

assuming that the most commonly used combination of e.g. a PMID 

and a DOI is likely to be the correct mapping, we consolidated all 

ambiguous pairwise mappings of document identifiers to unique 

mappings. During this process, we recognized that RefAuthKey is 

to error-prone for using it as a seed. 

Third, we joined the consolidated pairwise-unique mappings of 

document identifiers using the respective seed identifier in the 

mappings as the join criterion. This step yielded the following four 

combined mappings for the respective seed identifiers.  

1 PMID-DOI-MEDID-RefAuthKey-RefTitKey 

2 DOI-PMID-MEDID-RefAuthKey-RefTitKey 

3 MEDID-PMID-DOI-RefAuthKey-RefTitKey 

4 RefTitKey-PMID-DOI MEDID-RefAuthKey 

Fourth, we joined the mappings 1 through 4 consecutively in this 

order to the table of all references using the respective seed 

identifier of the mappings as the join criterion. If reference records 

matched one of the mappings in at least one more identifier besides 

the seed identifier, which we used for the join, we updated all data 

fields of the reference record to equal the mapping. Mapping 4, 

which uses the artificially computed RefTitKey as the seed 

identifier, is potentially more error-prone than the other mappings. 

Therefore, we used mapping 4 only to alter records that do not offer 

any other document identifier. 

Table 1 displays the availability of document identifiers for 

references before and after the consolidation. The table states the 

number of references for which the respective type of document 

identifier is available. Most frequently, authors state PMIDs when 

citing sources, DOIs and MEDIDs follow in second and third rank. 

In the table, we count the reference quantities per identifier category 

according to the most popular identifier that individual references 

offer. If a reference states a PMID and a DOI for example, we count 

it for the PMID category only. The table also lists the number of 

distinct identifiers from each group in the corpus. 

During the consolidation, we could assign a PMID to ~100,000 

reference records that did not have one prior to the consolidation. 

We were able to reduce the number of references that do not offer 

any numeric identifier by ~58,000 records. Additionally, we 

reduced the number of distinct PMIDs by ~3,000 and the number of 

distinct DOIs by ~17,000. These decreases in distinct identifiers 

suggest that we were able to eliminate the respective quantities of 

non-unique identifiers. 

No. of Ref. No. of dist. IDs No. of Ref. No. of dist. IDs

Total 

PMID
5,470,266 2,367,554 5,572,531 2,364,433

no PMID, 

DOI 195,359 158,652 192,705 141,357

no PMID, no DOI, 

MEDID 84 81 82 79

No identifiers, 

authors and title 831,899 655,841 733,183 597,220

No title and/or 

authors 423,641 - 422,748 -

6,921,249

Before Consolidation After Consolidation

Table 1: Reference identifier consolidation 

3.3 Detector 
The detection component performs pairwise comparisons between 

citation sequences. The component applies three different pattern 

analysis algorithms, which we developed to cover common forms of 

plagiarism, and which we will explain in the next sub-section. 

3.3.1 Citation Pattern Analysis Algorithms 
In [14], we proposed three pattern analysis algorithms for citation 

sequences termed Longest Common Citation Sequence, Citation 

Tiling and Citation Chunking. This section will provide a summary.  

The Longest Common Citation Sequence (LCCS) is an adaption of a 

traditional similarity measure for text strings. The LCCS consists of 

the maximum number of citations that one can take from a citation 

sequence without changing their order, but allows skipping over 

non-matching citations. For instance, the sequence (3, 4, 5) is a 

subsequence of (2, 3, 1, 4, 6, 8, 5, 9). The LCCS measure 

recognizes the order of citations, but offers flexibility to cope with 

slight transpositions or gaps of non-matching citations. 

Measuring the LCCS yields high similarity scores if a plagiarist 

uses longer parts of another text without alterations or only with 

minor changes of the source’s citations. These patterns characterize 

copy&paste plagiarism that potentially underwent minor 

obfuscations such as rewording through synonym replacements. 

Greedy Citation Tiling (GCT) is also an adaption of a well-known 

similarity measure for text strings, which its inventor specifically 

designed for PD purposes [37]. GCT identifies the longest 

individual patterns of consecutive, matching citations. The 

algorithm permanently links individual longest matches in the 

compared citation sequences and stores them as a so-called tile.  

 

GCT focuses on exact matches in the citation sequences. Such 

matches are strong indicators for potentially suspicious text 

similarity. GCT is able to deal with transpositions in the citation 

sequence that result from rearranging longer text segments, which 

is typical in shake&paste plagiarism.  

Citation Chunking is a set of heuristic procedures that identify local 

citation patterns regardless of potential transpositions, i.e. 

rearranging citations, or scaling, i.e. using identical citations 

multiple times, although the source only stated them once. We 



define three strategies for delimiting citation chunks. The first 

strategy considers only consecutive matching citations for forming 

chunks. The second includes matching citations in a chunk if     

or       non-matching citations separate it from the last 

preceding matching citation. The variable   denotes the number of 

citations in the chunk under construction. The third strategy 

includes citations that occur within a user-defined interval of text. 

We believe that the first chunking strategy is likely to reproduce and 

detect citation patterns that result from copy&paste plagiarism or 

weak paraphrases, which are achieved, for example, through 

synonym replacements. The second chunking strategy discovers 

shake&paste plagiarism, which results from interweaving text 

segments from different sources. When analyzing longer bodies of 

text, the third chunking strategy may detect idea plagiarism. After 

any of the procedures have delimited citation chunks, they compare 

all chunks pairwise while neglecting the order of citations within the 

chunks. The number of matching citations is the main similarity 

criterion.  

Identifying citation patterns is the first of two subtasks in the 

citation-based similarity assessment. The second is to rank patterns 

according to their likelihood of resulting from undue text usage. We 

determined two main factors that increase this likelihood and 

derived two corresponding ranking functions to analyze them. We 

describe these ranking functions in the next section. 

3.3.2 Scoring Functions for Citation Patterns 

Citing Frequency-Score (CF-Score) 

We regard the citation counts of individual documents in the 

collection to be valuable for indicating potentially suspicious 

citation patterns. Intuitively, two documents   and   that both 

received, for example, two hundred citations, are more likely to 

appear in a matching citation pattern than two documents   and   

that received three citations each, for example. Therefore, we 

consider citation patterns containing highly cited documents to be 

less likely a result of undue practices, but rather represent 

commonly cited standard literature of a field.  

If a document is already highly cited, its likelihood of gathering 

additional citations increases. Merton analyzed this phenomenon 

and termed it the Matthew effect in science [20]. Over time, highly 

cited documents tend to form a body of standard literature in a field. 

Authors frequently cite standard literature when providing context 

or referring to a base of established knowledge, which is relevant to 

their own research. Therefore, standard literature commonly does 

not indicate a specific similarity in the content of two works, but 

rather a rough topical relatedness of the research in several works. 

On the contrary, we regard shared citations to rarely cited sources to 

be a comparatively stronger indicator for potentially suspicious 

similarities between two works. 

To derive a scoring function from this hypothesis, we make the 

simplified assumption that authors cite sources independently of 

each other. That is, the choice to cite one source does not affect the 

choice of citing another. This assumption does not accurately reflect 

real citing behavior, because topical similarity of sources, their 

academic quality and other factors can influence an author’s choice 

of document citations, hence making citations statistically 

dependent. Incorporating these complex and interrelated factors into 

a model is difficult and beyond the scope of our preliminary 

evaluation. Therefore, we assume independent citations to derive a 

simplified, and easy to work with approximation of co-occurrence 

probability for our current prototype. We plan to devise more 

complex and realistic ranking models in the future. 

Assuming statistical independence for references, the probability of 

a reference   pointing to a document   equals the count of all 

references to   in the corpus divided by the corpus size   as 

follows:  (  )  
|  |

 
. Because rarely cited documents are more 

predictive and should receive a higher score, we inverse the ratio of 

the probability assessment to equal 
 

|  |
. We expect that the value of 

more frequently cited sources in predicting uncommon, highly 

specific content similarities does not decrease in direct proportion to 

the number of citations these sources gather. Therefore, we consider 

the square root of the total number of references to a source √|  | to 

be the denominator for our score.  

Because we derive our score from analyzing citing frequencies, we 

name it CF-score. The CF-score for a citation    that links to a 

reference   , which represents the source document    computes as 

  (  (  ))  
 

√|  |
 . 

To compute a CF-score for a citation pattern    that consists of   

citations       that link to   references    we accumulate the 

CF-scores of all citations in the pattern:   (  )  ∑   (  (  ))
 
   

Analogously, we compute the CF-score for a pair of documents 

      that share   matching citation patterns    by accumulating 

the CF-scores of the matching patterns:   (     )  ∑   (  )
 
 . 

To exemplify the computation of CF-scores for ranking citation 

patterns, we assume a corpus of       documents. In this corpus 

four documents       and   have the following citation counts: 
|  |      |  |     |  |     |  |   . Furthermore, we 

imagine two document pairs     and     that share the following 

citation patterns: X,Y: (A,B) (A,C) and X,Z: (CD). The resulting 

CF-scores for the document pairs compute as:  

  (   )     (  (   ))    (  (   ))    (  (   )) 
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The example shows that although the document pair     shares 

more citation patterns, the single pattern that document   shares 

with document   scores higher because it consists of comparably 

rarely cited sources. 

Continuity-Score (Cont.-Score) 

The number and proximity of matching citations within shared 

citation patterns are major factors that determine the similarity and 

the degree of suspicion for individual patterns. Our previous 

analysis of real-world plagiarism cases, such as the one of Mr. 

Guttenberg [15], consistently confirmed this relationship.  

To incorporate this knowledge as part of the CbPD analysis, we 

developed a scheme for computing what we call a continuity score 

for citation patterns. Based on our experience from prior plagiarism 

investigations, we devised the following scoring heuristic that 

weighs matching citations higher, if they occur in close proximity. 

Within a citation pattern, each matching citation that follows 

another matching citation, after three or less intermediate, 

non-matching citations have occurred, should increase the 

continuity-score of the pattern. The score increase in this case 

should be larger than 1 for not reflecting a simple count of matching 



citations, which we record separately. Furthermore, the score 

increase should be larger if fewer non-matching citations separate 

two subsequent matching citations. Lastly, the score should increase 

in proportion to the number of previous matching citations that 

fulfill the criterion of having a maximum of three intermediate, 

non-matching citations separating them from the preceding 

matching citation. This characteristic of the function reflects our 

observation that the similarity of citation patterns progressively 

increases, if longer sequences of matching citations occur in the 

pattern. The following formula presents the formal definition of the 

continuity-score: 

            ∑            ( (  
 )   (  

   )   )   

 

   

 

   {
 

   
 

|

  
 

  (  
 )   (  

   )        

 (  
 )   (  

   )        

} 

The formula considers a base score   for matching citations. For the 

first matching citation in the pattern   
 , we set the base score to 1. 

We increment the base score for each subsequent matching citation 

  
  |    in the pattern if less than four non-matching citations 

separate   
  from the previous matching citation   

   . We express 

this condition in terms of the sequential position  ( ) of citations. 

To penalize non-matching citations between matching citations, we 

subtract a penalty value of 0.25 for each non-matching citation. If 

four or more non-matching citations separate two matching 

citations, the base score is set to 1 again. In this case, the summand 

would become 0 if four intermitted non-matching citations separate 

the matching citations or negative if more than four non-matching 

citations exist in between. We chose to disallow the possibility that 

the continuity score of a pattern can become less than the count of 

matching citations in the pattern. We achieve this behavior through 

the application of the    () operator, which ensures that the 

minimum score increase for each matching citation is 1. 

Figure 6 exemplifies the computation of continuity scores for two 

citation patterns. In the figure, Arabic numerals represent matching 

citations and the letter x symbolizes non-matching citations. In the 

example, both citation patterns contain eight matching citations. 

This comparatively high number of matching citations allows both 

patterns to receive a continuity score that exceeds the length of the 

pattern, which equals the count of matching citations. The 

continuity score of the second pattern equals about 1.7 times the 

score of the first pattern. In this example, the higher score could 

signal that the second pattern is more likely to be a comparatively 

long match, and hence suspicious. The first pattern is somewhat 

likely to represent three smaller matches, which is less suspicious. 

786xxxxx132xxx45

Pattern Length = 8          Cont.-Score = 1+2+2.25+4+5+1+2+3 = 20.25 

2-0.25∙0 3-0.25∙3 4-0.25∙0 5-0.25∙0 1 2-0.25∙0 

87xx6xx1x3x2x45

Pattern Length = 8          Cont-Score = 1+2+2.75+3.75+4.75+5.5+6.5+8 = 34.25 

1 3-0.25∙1 4-0.25∙1  

1 3-0.25∙0 

2-0.25∙0 5-0.25∙1 6-0.25∙2 7-0.25∙2 8-0.25∙0

 

Figure 6: Cont.-Score computation for citation patterns 

3.3.3 Detector Implementation 
Figure 7 depicts the main components of the detector using a class 

diagram notation of the Unified Modelling Language (UML). We 

implemented each pattern analysis algorithm as a stand-alone Java 

class. The class “CitationPatternChecker” is a central hub that 

instantiates the different analysis classes according to selectable 

parameters and bundles functionality, which all pattern analysis 

algorithms require, e.g. determining the set of shared references. 

The other classes are multi-threaded implementations for subtasks 

related to input and output operations on the CitePlag database. 

 

Figure 7: UML class diagram for CitePlag Detector 

3.4 Report Generator 
Currently, CitePlag only has basic report functionalities due to its 

prototypical nature. The CitePlag report generator retrieves 

detection results from the CitePlag database and creates plain text 

files for every document pair that has matching citation patterns 

above a user entered threshold. Figure 8 shows an example report.  

Doc1. 59651, Brown: Debate: "How low should LDL 

cholesterol be lowered for optimum prevention of 

vascular disease?" Viewpoint: "Below 100 mg/dl" 

Doc2. 524501, Al Shaer, Choueiri, Suleiman: The pivotal 

role of cholesterol absorption inhibitors in the 

management of dyslipidemia                                                 

Match 1, l= 5 

D1, Sec. 1, Sent. 6: [B9] _(0)_ [B10] _(0)_ [B11] _(0)_ 

[B12] _(0)_ [B13] 

D2, Sec. 1, Sent. 9: [B4] _(0)_ [B5] _(0)_ [B6] _(0)_ 

[B7] _(0)_ [B8]                                                          

Match 2, l= 5 

D1, Sec. 1, Sent. 6: [B9] _(0)_ [B10] _(0)_ [B11] _(0)_ 

[B12] _(0)_ [B13] 

D2, Sec. 5, Sent. 53: [B4] _(0)_ [B5] _(0)_ [B6] _(0)_ 

[B7] _(0)_ [B8]                                                            

Figure 8: Example results report 

Result reports contain the main document metadata (title, authors, 

PMCID) for both documents and all matching citation patterns. For 

every matching citation pattern, the report states the length   of the 

match, the section (“Sec.”) and sentence (“Sent.”) of each document 



in which the match begins, and the citations that make up the match. 

The report lists matching citations enclosed in square brackets using 

the citation ID of the original NXML text. Additionally, the report 

states the number of non-matching citations that separate matching 

citations within a citation pattern enclosed in round brackets. 

The report generator includes the overall score for each document 

pair as the first characters of the file name for the respective report 

file. This naming convention allows us to use the operating system’s 

alphabetical file sort for ranking files according to their importance. 

4. OUTLOOK 
This paper describes the current state of the CitePlag prototype. We 

are still in the process of improving and advancing CitePlag’s 

functionalities. We publish changes and updates on the project’s 

website www.sciplore.org. 

The focus of our current research and development is CitePlag’s 

document parser and detection module. Regarding the document 

parser, we are working on integrating the open-source citation 

extraction tool ParsCit. Because ParsCit does not offer sentence and 

word detection, we must add this functionality to the tool to make it 

suitable for our extraction task. Once the new document parser is in 

operation, CitePlag will be able to process PDF files and recognize 

numerous citation formats. The improved document parser will 

enable us to significantly increase CitePlag’s database, beyond its 

current coverage of the PMC OAS.  

Improvements of CitePlag’s detection module include a suitable 

combination of detection algorithms and consideration of further 

similarity factors for the scoring of detected citation patterns. 

Through further empirical research on verified plagiarism cases, we 

seek to discover more characteristics of citation patterns that can 

help to detect suspicious document segments. We will use these 

characteristics for constructing a comprehensive citation-based 

similarity model.  

We are also working on devising additional scoring functions for 

ranking citation patterns according to their degree of suspicion. This 

is necessary to prevent false positives. Currently, CitePlag considers 

scores for citing frequency and continuity of citation patterns (see 

section 3.3.2). In the future, we will change the scoring function for 

citing frequency to employ Co-Citation Proximity Analysis (CPA) 

[12]. CPA is an enhancement of the popular Co-Citation similarity 

measure. Co-Citation considers documents as similar if documents 

that are more recent cite them together. CPA additionally evaluates 

the distance between the citations in the more recent texts. We 

showed that considering this additional information improves the 

similarity assessment of Co-Citation. Documents have a high CPA 

measure if many authors cite them together in close proximity. 

Document pairs that fulfill this condition are less suspicious from a 

CbPD perspective because they likely represent standard literature.  

Decreasing the score of citation patterns in related work sections of 

a document is another strategy to reduce the impact of standard 

literature on the CbPD assessment. Reducing the score of matching 

citation patterns in documents with shared author sets can be 

desirable for focusing the analysis on detecting potential plagiarism 

instead of potential self-plagiarism. We plan to incorporate scoring 

functions that reflect these two strategies.  

In the long run, we plan to combine our citation-based detection 

algorithms with text-based PD methods. One combination of the 

two approaches would be to employ the computationally less 

intensive citation-based methods as a preliminary filter to limit the 

number of documents subject to a computationally demanding 

text-based analysis.  
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