
The unsteady continuous adjoint method for
minimizing flow-induced sound radiation

Christos Kapellosa,b,∗, Evangelos M. Papoutsis-Kiachagiasa,
Kyriakos C. Giannakogloua, Michael Hartmannb

aParallel CFD & Optimization Unit, School of Mechanical Engineering, National Technical
University of Athens, Heroon Polytechniou 9, 15780 Zografou, Greece

bCAE Methods, Vehicle Technology, Volkswagen Group Research, Berliner Ring 2, 38436
Wolfsburg, Germany

Abstract

This paper develops the unsteady continuous adjoint method for aeroacoustic

problems governed by time-dependent turbulent flows. To predict flow-induced

sound radiation from a body in free-stream, an incompressible Improved Delayed

Detached Eddy Simulation is firstly performed. The generated noise is then

propagated with the Kirchhoff Integral method, which uses the pressure distri-

bution on the body surface to compute the sound pressure at selected receivers.

The continuous adjoint method for the aforementioned process is developed and

presented for the first time. In the adjoint process, the differentiated Kirchhoff

Integral is used to compute the boundary condition of the adjoint velocity on the

body surface and, then, the unsteady adjoint equations are solved backwards

in time. It should be noted that the time window where the simulation is per-

formed and the time window over which the objective function is evaluated do

not coincide. This is reflected on the adjoint boundary condition along the body

and the time integration of the sensitivity derivatives. Furthermore, to ensure

the consistency of the continuous adjoint-based gradients, grid sensitivities are

taken into account. By incorporating the grid displacement equations during

the mathematical development of the adjoint method, the surface integral of

the residual of the flow PDEs, which is commonly omitted, is replaced with a

∗Corresponding author.

Preprint submitted to Journal of Computational Physics July 9, 2019



volume integral of the grid sensitivities and gives rise to the adjoint grid dis-

placement equations along with an accurate sensitivity derivatives expression.

The proposed method is verified against Finite Differences on a 3D turbulent

flow around a cylinder and, then, applied to a real-world test case, concerned

with the flow-induced sound radiation of the side mirror of the generic SAE

vehicle.

Keywords: Continuous adjoint method, adjoint aeroacoustics, Kirchhoff

Intergal method, IDDES flow simulation, grid sensitivities, vehicle

aeroacoustics

1. Introduction

The adjoint method has been established in engineering optimization work-

flows related to fluid mechanics, as it offers an efficient way to compute the

gradient of objective functions, for use in gradient-based optimization. Both

continuous [1, 2] and discrete [3, 4] adjoint formulations are in use in a wide

range of applications for internal and external industrial flows [5, 6, 7, 8]. In

the majority of these problems, the flows are governed or assumed to be gov-

erned by steady state equations. The main reason for this is that the unsteady

adjoint method for real-world applications is extremely demanding in compu-

tational cost and storage requirements. With the advancements in computer

technology, it has become possible to overcome these limitations and adjoint

optimization for unsteady flows has started being used. This is imperative in

scientific areas such as aeroacoustics where all problems are inherently unsteady.

Nevertheless, recent works are still limited to mid-size test cases of low com-

plexity flow problems [9, 10, 11]

This paper focuses on the formulation of the unsteady continuous adjoint

method for real-world aeroacoustic problems governed by turbulent flows. The

process presented here predicts the flow-induced sound field that is being radi-

ated from an object in a free-stream. For low Mach number turbulent flows, it

is safe to assume that the hydrodynamic pressure on the surface of the sound

2



radiating object dominates its acoustic counterpart [12]. Consequently, a flow

solution provided by a high-fidelity unsteady incompressible flow solver is suf-

ficient to resolve the physics of noise creation. The generated noise can be

transmitted to the near- and far-field, either by solving additional equations,

such as the Linearized Euler Equations, or with acoustic analogies, by comput-

ing volume or surface integrals which are analytical solutions of the Lighthill

equation [13]. In this work, the Kirchhoff Integral method [14], which offers

simplicity in implementation and accuracy for non-rotating configurations [15],

is utilized. In order to obtain the sound pressure at a receiver, the pressure

and its time and space derivatives, weighted by directivity coefficients, are in-

tegrated over a control surface surrounding the noise sources, namely the body

in free-stream. The Ffowcs Williams-Hawkings (FW-H) equation [16] could be

also used, however, for control surfaces on rigid bodies, this formulation leads

essentially to the same sound sources on the body.

Once a process to compute the noise transmitted to the receiver from a body

becomes available, the shape of the latter can be optimized through gradient-

based optimization. The optimization target is to reduce the noise perceived by

the receiver and the required gradient of the objective function with respect to

(w.r.t.) the shape controlling parameters is computed with the adjoint method.

The continuous adjoint formulation where the unsteady adjoint Navier-Stokes

equations and the adjoint Kirchhoff Integral are derived, is presented in this

paper. Following each shape modification within the optimization loop, grid

displacement partial differential equations (PDEs) propagate the boundary dis-

placement to the interior nodes, an action that should be taken into account

during the continuous adjoint formulation. To do so, this paper extends the

development presented in [17] for unsteady aeroacoustic problems. Adjoint grid

displacement PDEs are derived and an additional term arises in the sensitivity

derivatives expression. It is demonstrated that, in aeroacoustic gradient-based

optimization, this formulation ensures the accuracy of the computed gradients

with negligible computational burden.

The paper is structured as follows. Section 2 describes the governing equa-
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tions for the flow-induced noise creation and propagation. An objective function

suitable for aeroacoustics based on the time integral of squared acoustic pres-

sure fluctuation computed at the receivers, is defined. The continuous adjoint

formulation for the aeroacoustic problem is then described. Section 3 offers prac-

tical details about the implementation of the method, which is programmed in

OpenFOAM c©. In section 4, the proposed method is verified against finite dif-

ferences, in the case of a turbulent flow around an isolated 3D cylinder. The

accuracy of the proposed sensitivity derivatives expression is proven and the

importance of taking grid sensitivities into consideration is convincingly demon-

strated. In section 5, the method is applied to optimize the shape of the side

mirror of a generic vehicle (SAE body) for the aforementioned objective func-

tion. Firstly, a sensitivity map analysis is conducted to investigate the influence

the sensitivity derivative integration time window has on its computation but,

also, to prove the importance of including the adjoint grid dispacement equa-

tions. Finally, an optimization of the side mirror is performed, targeting at

minimizing the radiated flow-induced sound at the vehicle’s side window, which

is associated to the cabin noise level [18].

2. The continuous adjoint method for aeroacoustic problems

This section presents the development of the continuous adjoint method,

tailored for shape optimization problems in aeroacoustics. Firstly, the physical

mechanisms of flow-induced noise creation and radiation are described and,

then, the objective function, the corresponding adjoint field equations, boundary

conditions and sensitivity derivatives expression are derived. Among the original

contributions of this work are the differentiation of the acoustic analogy and the

inclusion of the adjoint to the grid displacement model and the investigation of

its effect on the accuracy of the computed gradients.

2.1. Prediction of flow-induced noise at a receiver

In the presented method, the prediction of flow-induced noise at the reveiver’s

location from bodies in free stream is separated in two steps. The first step nu-
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merically solves the flow around the body to compute the hydrodynamic pres-

sure on its surface. In the second step, the acoustic propagation is carried out

by means of the Kirchhoff Integral surface method.

The 3D unsteady Navier-Stokes equations, including a turbulence model,

govern the incompressible fluid flow

Rp =
∂vj
∂xj

= 0 (1)

Rvi =
∂vi
∂t

+ vj
∂vi
∂xj
− ∂τij
∂xj

+
∂p

∂xi
= 0 , i = 1, 2, 3 (2)

where vi are the velocity components, p the static pressure divided by the den-

sity, τij = (ν + νt)
(
∂vi
∂xj

+
∂vj
∂xi

)
the stress tensor and ν and νt are the bulk and

turbulent viscosities, respectively. Throughout this paper, repeated indices in a

term imply that the Einstein summation rule is applied.

The one-equation Spalart-Allmaras (S-A) turbulence model [19] is added

to the primal equations and the Improved Delayed Detached Eddy Simulation

(IDDES) technique [20] is used. This approach combines a Wall Modelled LES

(WMLES) simulation, in the case with inflow turbulent content, and a DDES

simulation otherwise.The subgrid length-scale of this strategy depends both

on the grid spacings and the wall distance. Furthermore, by modifying the

definition of the DDES length scale, lDDES , the DDES behavior of the model

gives an improved, compared to DES, RANS solution for attached regions and

a DES-like for massively separated flows.

Upon convergence of the unsteady flow equations, the Kirchhoff Integral

method is applied. This uses the pressure and its time and spatial derivative

distribution on the selected Kirchhoff surface which, in this work, coincides with

the body surface SW , to compute the radiated acoustic field

pac(t, ~xrec) =
1

4π

∫
SW

[
− 1

R

∂p

∂xi
n̂i +

(
1

R2
p+

1

a0R

∂p

∂t

)
r̂in̂i

]
ret

dS (3)

at the receiver ~xrec. Here, a0 is the ambient speed of sound, n̂ the unit normal

vector to SW pointing towards the fluid, ~r = ~xrec− ~x the vector connecting the

source and the receiver and R its magnitude whereas r̂ = ~r
R . The r.h.s. of eq. 3
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is expressed at the retarted time τ = t − R
a0

, which is the time instant that a

sound wave leaves the source to reach the receiver at t.

The terms on the r.h.s. of eq. 3 have a clear physical meaning; the first is

known as thickness noise whereas the second and third as loading noise and are

associated with the forces acting on it. In the flow problem, a zero Neumann

condition is imposed on the pressure along SW , so that the first term vanishes

and the Kirchhoff integral reduces to

pac(t, ~xrec) =
1

4π

∫
SW

[
1

R2
p+

1

a0R

∂p

∂t

]
ret

r̂i︸ ︷︷ ︸
gret,i

n̂i dS (4)

Hereafter, pac(t, ~xrec) will be denoted by pac.

The noise perceived by the receiver is related to the fluctuation of the acous-

tic pressure pac computed by eq. 4 . Consequently, a suitable objective function

for shape optimization targeting minimal noise can be defined as the time-

averaged squared acoustic pressure fluctuation

J =
1

Tof

∫
Tof

(pac − pac)2dt =
1

Tof

∫
Tof

p′ 2acdt (5)

where the overbar denotes time-averaging over the time window Tof . In case

a set of receivers is studied, the objective function is simply the sum of the

r.h.s. integrals of eq. 5 over all receivers. For the sake of readability and without

loss of generality, the mathematical development that follows considers only one

receiver, even if the applications of section 5 include larger sets of receivers.

2.2. Grid displacement model

During the optimization process, the design variables bn, n = 1, ..., N are

updated and the body geometry is modified accordingly. The interior nodes

of the computational grid must be displaced as well. The influence of the grid

displacement must be taken into account for the gradient computation to be

consistent in a numerical sense with the primal procedure. Any equation that

propagates the boundary displacement into the interior grid nodes can be used
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and, in this work, the Laplacian equations are chosen,

Rmi =
∂2mi

∂x2
j

=0 , i = 1, 2, 3 (6)

where mi are the Cartesian displacements of the grid nodes. Along Sw, mi

are known from the current optimization step, while mi = 0 on the remaining

boundaries, S \ Sw, which are not affected by the optimization.

2.3. Continuous adjoint formulation

Starting point of the continous adjoint formulation is the definition of the

augmented objective function L as the sum of J and the time and space integrals

of the product of the primal residuals and the adjoint variable fields. The

augmented objective function, thus, yields

L = J +

∫
Ts

∫
Ω

uiR
v
i dΩdt+

∫
Ts

∫
Ω

qRpdΩdt+

∫
Ω

ma
iR

m
i dΩ (7)

where Ts is the time window over which the primal equations, eqs. 1 and 2,

are solved, ui, q, m
a
i are the adjoint to the velocity vi, pressure p and grid

displacement mi, respectively. Although an adjoint turbulence variable could

have been introduced as in previous works from the authors’ group [21], the

frozen turbulence assumption is made in the applications presented in sections

4 and 5.

Time windows Tof and Ts, as defined in eqs. 5 and 7 respectively, do not

necessarily coincide. In order to exclude transient phenomena occuring in the

beginning of unsteady flow simulations, the flow equations are usually solved

for a large time window Ts. After a sufficient interval of time, the integration

of the objective function begins and is performed for a time window Tof being

a part of time window Ts. This is why the general case in which Ts and Tof

do not coincide is presented. Section 5 investigates further the selection of the

two time windows by means of adjoint sensitivity maps on the side mirror of a

generic vehicle.

The variation in L w.r.t. bn is

δL

δbn
=

δJ

δbn
+

δ

δbn

∫
Ts

∫
Ω

(uiR
v
i + qRp) dΩdt+

δ

δbn

∫
Ω

ma
iR

m
i dΩ (8)
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Each of the r.h.s. terms of eq. 8 is developed further as follows.

The total variation of any quantity Φ, associated with position ~x and retarted

time τ , w.r.t. bn, is given by

δΦ

δbn
=

∂Φ

∂bn

∣∣∣∣
x,τ︸ ︷︷ ︸

T1

+
∂Φ

∂xi

∣∣∣∣
b,τ

δxi
δbn︸ ︷︷ ︸

T2

+
∂Φ

∂τ

∣∣∣∣
b,x

∂τ

∂xi

∣∣∣∣
b

δxi
δbn︸ ︷︷ ︸

T3

(9)

where the subscripts on the right of each vertical bar are considered constant

during differentiation. Terms T1 and T2 express the derivative of Φ at a fixed

retarted time τ , as if any body shape change does not affect τ , despite changes

in distances. T1 denotes the derivative of Φ by ignoring the effect of bn on xi,

whereas T2 accounts for space changes at the same node (grid displacements,

in the discrete sense) following changes in bn, for a fixed field of Φ. Term

T3 indicates changes in Φ because of a change in τ , caused by a change in

the relative position between the modified source point and the fixed receiver.

Whenever Φ is not expressed at the retarted time, T3 vanishes.

The differentiation of eq. 5 w.r.t. bn yields

δJ

δbn
=

2

Tof

∫
Tof

p′ac

(
δpac
δbn
− δpac

δbn

)
dt =

2

Tof

∫
Tof

p′ac
δpac
δbn

dt (10)

since
∫
Tof

p′acdt = 0.

The derivative of the acoustic pressure, eq. 4 , is then expanded as

δpac
δbn

=
1

4π

∫
SW

[
δgret,i
δbn

n̂idS + gret,i
δ(n̂idS)

δbn

]
(11)

As the integrand of eq. 11 is expressed at the retarded time τ , the derivative of

gret,i is developed according to eq. 9 as

δ

δbn

(
r̂i
R2

p

)
=

[(
3r̂ir̂j

δxj
δbn
− δxi
δbn

)
1

R3

]
p

+
r̂i
R2

[
∂p

∂xj

δxj
δbn

+
∂p

∂t

r̂j
a0

δxj
δbn

+
∂p

∂bn

]
(12)

and

δ

δbn

(
r̂i
a0R

∂p

∂t

)
=

[(
2r̂ir̂j

δxj
δbn
− δxi
δbn

)
1

a0R2

]
∂p

∂t

+
r̂i
a0R

[
.
∂p2

∂t∂xj

δxj
δbn

+
∂2p

∂t2
r̂j
a0

δxj
δbn

+
∂2p

∂t∂bn

]
(13)
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where p and its derivatives are expressed at τ .

By replacing eqs. 12 and 13 into 11, the derivative of the acoustic pressure

radiated to a receiver from a source surface Sw w.r.t. the design variables bn is

given by

δpac
δbn

(t, ~xrec) =
1

4π

∫
SW

(3r̂in̂ir̂j − n̂j)
[

1

R3
p+

1

a0R2

∂p

∂t

]
ret

δxj
δbn

dS

+
1

4π

∫
SW

[
r̂in̂i
R2

∂p

∂xj
+
r̂in̂i
a0R

(
∂2p

∂t∂xj
+
r̂j
a0

∂2p

∂t2

)]
ret

δxj
δbn

dS

+
1

4π

∫
SW

[
r̂in̂i
R2

∂p

∂bn
+
r̂in̂i
a0R

∂

∂t

(
∂p

∂bn

)]
ret

dS

+
1

4π

∫
SW

gret,i
δ(n̂idS)

δbn
(14)

On the r.h.s. of eq. 14 , the time-varying flow quantities p, ∂p/∂t, ∂2p/∂t2 as

well as their partial derivatives w.r.t. the design variables are expressed at the

retarted time τ which depends on the distance between the receiver and the

corresponding sender.

Using the Leibniz theorem for differentiating volume integrals with variable

boundaries, the second term on the r.h.s. of eq. 8 yields

δ

δbn

∫
Ts

∫
Ω

(uiR
v
i + qRp) dΩdt =

∫
Ts

∫
Ω

(
ui
∂Rvi
∂bn

+ q
∂Rp

∂bn

)
dΩdt

+

∫
Ts

∫
S

(uiR
v
i + qRp)nk

δxk
δbn

dtdS (15)

The first term on the r.h.s. of eq. 15 can be expanded further by using the

Green-Gauss theorem along with eq. 9 . This paper does not contribute further

to the development of the aforementioned term which is based on the technique

presented in [6], so is omitted.

Emphasis is laid on the surface integral on the r.h.s. of eq. 15 . This term

is usually omitted, under the questionable assumption that the Navier-Stokes

equations are satisfied along the boundary. In aerodynamic shape optimization

problems, [17] showed that this omission may have a great impact on the ac-

curacy of the gradient. Furthermore, computing the Navier-Stokes equations’

residuals along the boundaries may not be an error-free process, since the com-

putation of second-order spatial derivatives on the boundaries of unstructured
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grids is prone to inaccuracies. For this reason, this term is developed further,

[17], and transforms into a volume integral of grid sensitivities δxk

δbn∫
Ts

∫
SW

(uiR
u
i + qRp)nk

δxk
δbn

dSdt

= −
∫
Ts

∫
Ω

∂

∂xj

{
−uivj

∂vi
∂xk
−uj

∂p

∂xk
−τaij

∂xi
∂xk

+ui
∂τij
∂xk

+q
∂vj
∂xk

}
δxk
δbn

dΩdt

(16)

which should be considered in order to derive the adjoint equations and sensi-

tivity derivatives.

The last term on the r.h.s. of eq. 8 is also expanded as follows, [17],

δ

δbn

∫
Ω

ma
iR

m
i dΩ =

∫
S

ma
i nj

∂

∂xj

(
δxi
δbn

)
dS −

∫
SW

∂ma
i

∂xj
nj
δxi
δbn

dS

+

∫
S

∂2ma
i

∂x2
j

δxi
δbn

dΩ +

∫
S

ma
iR

m
i nk

δxk
δbn

dS (17)

The derived expressions of all terms, eqs. 11 , 14, 15, 16 and 17, can now be

replaced into eq. 8 . Zeroing the coefficients of ∂vi/∂bn, ∂p/∂bn and δxi/δbn

in the derived field integrals, gives rise to the unsteady adjoint Navier-Stokes

equations

Rq = −∂uj
∂xj

= 0 (18)

Rui = −∂ui
∂t

+ uj
∂vj
∂xi
− ∂(vjui)

∂xj
+

∂q

∂xi
−
∂τaij
∂xj

= 0 , i = 1, 2, 3 (19)

where ταij = (ν + νt)
(
∂ui

∂xj
+

∂uj

∂xi

)
is the adjoint stress tensor. Eqs. 18 and 19

must be solved along with the adjoint grid displacement equations

Rm
a

k =
∂2ma

k

∂x2
j

+

∫
Ts

∂

∂xj

{
uivj

∂vi
∂xk

+ uj
∂p

∂xk
+ τaij

∂vi
∂xk
− ui

∂τij
∂xk

− q ∂vj
∂xk

}
dt

+ ui
∂vi
∂xk

∣∣∣∣
tstart

= 0 , k = 1, 2, 3 (20)

where ma
k is the adjoint to the grid displacements.

The unsteady adjoint equations, 19 and 18, are solved backwards in time.

This is imposed by the derived initial condition, during the development of
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the differentiation of the temporal derivative of the Navier-Stokes equations.

Thanks to the permutation ∂
∂bn

(
∂vi
∂t

)
= ∂

∂t

(
∂vi
∂bn

)
, we get

∫
Ts

∫
Ω

ui
∂

∂bn

(
∂vi
∂t

)
dΩdt = −

∫
Ts

∫
Ω

∂ui
∂t

∂vi
∂bn

dΩ +

∫
Ω

ui
∂vi
∂bn

dΩ

∣∣∣∣tend

tstart

= −
∫
Ts

∫
Ω

∂ui
∂t

∂vi
∂bn

dΩ +

∫
Ω

ui
∂vi
∂bn

dΩ

∣∣∣∣
tend

−
∫

Ω

ui
δvi
δbn

dΩ

∣∣∣∣
tstart

+

∫
Ω

ui
∂vi
∂xj

δxj
δbn

dΩ

∣∣∣∣
tstart

(21)

where tend = tstart + Ts. The first term on the r.h.s. contributes to the field

adjoint equations. A zero adjoint velocity condition is imposed at the end time

of the primal computation to eliminate ∂vi/∂bn
∣∣
tend

appearing in the second

term, resulting to the initial condition of the adjoint solution at the end. The

third term is zero, since the flow velocity at t = tstart is independent of the

design variables and the fourth one contributes as a source term to the adjoint

grid displacement equations.

Similarly, by eliminating the coefficients of partial derivatives of the primal

variables w.r.t. bn in the surface integrals along the far-field and wall boundaries,

the adjoint boundary conditions are derived. The boundary conditions ma
i = 0

is imposed along S, [17].

In addition to the development in [17], the primal and adjoint fields are time-

dependent and, thus, the source term in the steady adjoint grid displacement

equations, eqs. 20 , includes one time integral over Ts. During the solution of

eqs. 18 and 19, the computed primal/adjoint velocity and pressure fields are

accumulated in time to obtain the source term of eqs. 20 . Then, eqs. 20 can

be solved as a post-processing step, once per optimization cycle, in order to

compute the adjoint grid displacements ma
i , i = 1, 2, 3.

To derive the boundary condition of the ui on the wall, the following integral,

arising in the development of the first term on the r.h.s. of eq. 15 , must be

eliminated ∫
Ts

∫
SW

(
ui +

∂J

∂pac

∂pac
∂p

ni

)
ni
∂p

∂bn
dSdt (22)
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The third integral on the r.h.s. of eq. 14 is replaced in eq. 22 and by setting the

multiplier of ∂p/∂bn to zero, the wall adjoint velocity at time t yields

ui = − 1

2πTof

[
r̂j n̂j
R2

p′ac −
r̂j n̂j
a0R

∂p′ac
∂t

]
adv

ni (23)

The adjoint velocity has a constant direction that is normal to the surface and

its instantaneous value at t depends on the acoustic pressure, computed at

advance time τadv = t + r
c . During the primal solution, the acoustic pressure

and its temporal derivative at any receiver at time t are computed based on the

contributions of the time instants at retarted time τ . Conversely, the acoustic

pressure and its time derivative contributing to the adjoint boundary condition

at a time instant t are expressed at the “adjoint retarted” time, which is in fact

an advanced time τadv, given that the adjoint simulation runs backwards this

time. Details about the algorithmic implementation can be found in section 3.

Furthermore, since eq. 23 involves the differentiation of the objective function,

it is valid only for the time window Tof and has no contribution, i.e. ui = 0, at

any other time instant of Ts.

After the derivation of the adjoint field equations and boundary conditions,

the remaining terms of the mathematical development of eq. 8 yield the expres-

sion for the sensitivity derivatives along the wall boundary SW

δJ

δbn
= −

∫
Ts

∫
SW

(
τaijnj − qni

)
∂vi
∂xk

δxk
δbn

dSdt

−
∫
Ts

∫
SW

[
−uknk

(
τij
δ(ninj)

δbn
+
∂τij
∂xk

δxk
δbn

ninj

)]
dSdt

−
∫
SW

∂ma
i

∂xj
nj
δxi
δbn

dS

+
1

2πTof

∫
Tof

p′ac

∫
SW

(3r̂in̂ir̂j − n̂j)
[

1

R3
p+

1

a0R2

∂p

∂t

]
ret

δxj
δbn

dSdt

+
1

2πTof

∫
Tof

p′ac

∫
SW

[
r̂in̂i
R2

∂p

∂xj
+
r̂in̂i
a0R

(
∂2p

∂t∂xj
+
r̂j
a0

∂2p

∂t2

)]
ret

δxj
δbn

dSdt

+
1

2πTof

∫
Tof

p′ac

∫
SW

gret,i
δ(n̂idS)

δbn
dt (24)

The first two surface integrals indicate geometry changes which affect directly

the flow and, consequently, the pressure distribution and noise creation on the
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body. The third surface integral expresses the influence the change of the com-

putational mesh has on the objective function; its significance in ensuring the

accuracy of the sensitivities is demonstated in the following section. Finally, the

last three integrals are associated with the directivity of the sound field and how

this is affected by geometry changes. It is important to point out the difference

in the integration time windows of the sensitivity derivative terms; the first two

are integrated over the simulation window Ts whereas the last three over the

objective function window Tof .

3. Implementation and practicalities

The primal and adjoint flow simulations are performed in the OpenFOAM c©

environment. The flow equations are solved using the standard transient in-

compressible solver pisoFoam, utilizing a blending scheme for the convection

term, which switches between a central second-order scheme at fine resolved

areas and a second-order upwind scheme elsewhere, [22]. The adjoint equations

are solved using an in-house adjoint OpenFOAM c© solver, using the PISO al-

gorithm, with a second outer iteration when needed, to converge the adjoint

momentum equations more. For the convection term in the adjoint solution, a

second-order downwind scheme is used. In the case of convergence instabilities

that usually occur in industrial applications, a first-order scheme is used for

the convection term and a dissipative limited scheme for the spatial gradient

discretization of the so-called Adjoint Transpose Convection term, uj
∂vj
∂xi

, in the

adjoint momentum equation, eq. 19 .

As seen in eq. 19 , the instantaneous primal velocities are needed for the

backward time integration of the adjoint solution. Since storing all time steps

requires a great amount of memory, the binomial checkpointing technique was

used [23], where only a set of time steps, the so-called checkpoints, is stored.

The Kirchhoff Integral solver and its adjoint were programmed as a stand-

alone library in the OpenFOAM c© environment. During the primal solution

(forward integration in time), the hydrodynamic pressure time-series on the

13



body is stored at each timestep. At the end, the Kirchhoff Integral, eq. 4 , is

computed, yielding the acoustic pressure at the receivers. A central eighth-

order scheme with the equidistributed CFD time instants was used to compute

all time derivatives. The acoustic pressure is computed and stored at the CFD

timesteps. At each timestep, for every face of the Kirchhoff surface, the cor-

responding advanced time for each receiver is computed, which does not nec-

essarily coincide with the CFD time-steps and (linear) interpolation is needed.

To reduce the computation time and the computer memory requirements per

processor, the implemented algorithm distributes variables computed at both

senders and receivers to all processors in use, used for the flow solution. The

last part of the algorithm computes the adjoint velocity boundary condition,

eq. 23 , and the three last integral terms of the sensitivity derivative expression,

eq. 24 . The adjoint velocity boundary conditions on the body surface are stored

and called by the adjoint flow solver at each time step. The adjoint Kirchhoff

Integral requires around twice as many computations as the primal one and thus

has almost double computational cost.

4. Verification of the computed sensitivity derivatives

In this section, the proposed method presented is verified against finite dif-

ferences (FD) in a case concerning the unsteady turbulent flow around an iso-

lated 3D cylinder. The Reynolds number based on the cylinder diameter D

is ReD = 500; in this case, the wake exhibits fully turbulent behavior for a

cylinder spanwise length greater than π diameters [24]. In this work, a spanwise

length of 4 diameters was used for the cylinder and an O-Type grid consisting

of 1.5 million cells was generated, with a far-field distance of 15D. An initial

run was performed for a total of 100s, in order to skip the transition phase. The

computed flow fields at the end, fig. 1 were stored and used as initial conditions

for the investigation that follows.

To modify the cylinder surface, the volumetric B-Splines morphing method,

developed by NTUA [25], was utilized. A set of 8 control points was selected,
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their x and y coordinates being the design variables bn as shown in fig. 3. The

derivatives of eq. 5 w.r.t. bn were computed with central differences, where a

step size equal to 10−6D was chosen, after conducting a study on independence

of the step size. For each perturbation, the cylinder geometry was modified

by the morpher and, afterwards, these displacements were propagated into the

interior of the grid by solving eqs. 6 .

The flow was then simulated for Ts = 10s and the objective function J, as in

eq. 5 , was computed for a time integral Tof = 10s = Ts at the receivers placed

at a distance of 15D on the z-plane crossing the middle of the cylinder, fig. 2.

The adjoint method developed in this work was used to obtain the sen-

sitivities of J w.r.t. bn. In fig. 3, the gradient values computed with FD are

plotted against the ones computed with the adjoint method. To emphasize the

importance of the sensitivity derivatives formulation presented in this paper, a

second expression for the adjoint derivatives, commonly used in aerodynamic

shape optimization, is presented for comparison. The latter, referred to as Sur-

face Integral (SI) formulation in [17], makes the assumption that the surface

integral over SW , as shown in eq. 15 , is zero. As it will be shown below, by

neglecting this term, a significant error is introduced and the computed deriva-

tives become inaccurate. Recall that the formulation presented in this paper,

proposed as the Enhanced Surface Integral adjoint formulation (E-SI) in [17],

substitutes this term by solving the adjoint grid displacement equations and

enhancing the sensitivity derivatives expression with an additional surface in-

tegral, −
∫
SW

∂ma
i

∂xj
nj

δxi

δbn
dS. The gradients computed with the proposed method

are in a very good agreement with those computed with the FD scheme.

5. Application on the side mirror of the SAE body

In this case, the proposed adjoint-based optimization is applied to minimize

the flow-induced sound radiation from the side mirror of a generic vehicle, the

SAE body (fig. 4), to the vehicle’s side window. Cabin noise is related to the

acoustic load on the window, [26], so its minimization is a first step towards the
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Figure 1: Turbulent flow around a 3D cylinder for Re=500. Left: Instantaneous flow structure

visualized by the isosurface of Q = 1
8

(
‖∇v − (∇v)T ‖2 − ‖∇v + (∇v)T ‖2

)
= 10−1s−2 and

colored according to the velocity magnitude. Right: Adjoint vorticity iso-surfaces colored by

the adjoint velocity magnitude (s−3). Black lines are the primal velocity streamlines.

Figure 2: Turbulent flow around a 3D cylinder for Re=500. Instantaneous flow velocity at t =

10s on a z-Plane slice of the O-Type grid (left). Dark squares around the boundary represent

the positions of the receivers, where the flow-induced sound radiaton is assessed with the

Kirchhoff Integral method. The directivity pattern (right) was computed for pref = 20µPa.

reduction of interior noise.

The computational grid, generated with the snappyHexMesh tool of OpenFOAM c©,

comprises 80 million cells, with a mesh resolution of 1mm on and around the

mirror that resulted in 120000 faces-senders on the mirror surface. The receivers
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Figure 3: Turbulent flow around a 3D cylinder for Re=500. Left: Set of volumetric B-Splines

control points used to parameterize the cylinder geometry. The degrees of freedom for each

control point are the x and y coordinates, resulting in 16 design variables in total. Right:

Comparison of the objective function gradient computed with FD and the adjoint method

with and without considering the adjoint grid displacement. It is clear that the proposed

adjoint gradient expression is crucial to ensure the accuracy of the method for aeroacoustic

problems.

were distributed uniformly on the side window on a structured grid of 1 cm, not

coinciding with the CFD surface grid nodes, leading to a total number of 10000.

The A-pillar vortex and the mirror wake at a flow velocity of 40 m/s are shown

in fig. 5(a). It is the interaction of these two typical vehicle flow structures that

leads to strong pressure fluctuation on the mirror and, consequently, noise gen-

eration and radiation to all directions and to the vehicle side window, fig. 5(b).

5.1. Sensitivity map analysis

In what follows, flow-induced noise from the mirror is assessed with a flow

computation for a total of 1.3s; the first 1s is used to skip the initial transient

phase and during the last 0.3s, where the unsteady flow is considered to have

reached a statistically stationary state, the acoustic pressure on the receivers and

the objective function is computed. In order to compute consistent gradients,

the adjoint flow must be simulated for the same primal time window of 1.3s.

However, since only the last 0.3s affect directly the computation of the objective
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Figure 4: SAE Type 4 geometry: Front view of the SAE body (left). The area marked in

purple is the vehicle’s side window, where 10000 receivers are placed and the radiated acoustic

pressure is computed. A shape optimization of the side mirror (right) is performed, in order

to reduce flow-induced noise radiation to the side window, which is quantified as the sum of

eq. 5 over all receivers.

(a) (b)

Figure 5: Turbulent flow around the SAE body: Instantaneous flow structure visualized by the

isosurface of Q = 1
8

(
‖∇v − (∇v)T ‖2 − ‖∇v + (∇v)T ‖2

)
= 5 · 105s−2 and colored according

to the velocity magnitude (left). Instantaneous acoustic pressure computed at the window

with the Kirchhoff Integral method (right).

function, the question whether solving the adjoint equations over this shorter

time window is equivalent, is intuitively raised. In the mathematical sense, this

leads essentially to a different optimization problem, which focuses on the flow

solution only on the last 0.3s, neglecting this way the initial transient phase.

The study that follows sheds light on whether such an approach leads to a
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correct outcome of the optimization procedure and can be used instead of the

full adjoint simulation of 1.3s.

The two approaches examined are:

• Approach A computes the primal flow for a total of Ts = 1.3s and in-

tegrates the objective function for the last Tof = 0.3s of the simulation.

The adjoint equations are then solved for the interval of Ts = 1.3s and the

adjoint velocity boundary condition along the side mirror takes the eq. 23

only on the first Tof = 0.3s of the adjoint simulation and, afterwards, this

is set to zero until the end of the simulation. The integral of eq. 20 and

the first three terms of eq. 24 are integrated over Ts, while the last three

terms of eq. 24 are integrated only over the first Tof = 0.3s of the adjoint

solution (backwards in time), the time interval over which the objective

function was evaluated during the primal simulation (forwards in time).

• Approach B, on the other hand, starts from the already converged un-

steady flow field at t = 1s, computes the primal flow and evaluates the

objective function for the remaining time, thus Ts = Tof = 0.3s. The ad-

joint solution and all terms of eq. 24 are integrated as well over the time

integral Ts = 0.3s. This is consistent with the adjoint velocity boundary

condition, eq. 23 , as long as the initial field of each primal simulation dur-

ing the optimization is kept the same and, thus, independent of the design

variables, so that δvi/δbn
∣∣
tstart

= 0.

The wall clock time for a single flow solution distributed at 960 CPUs was

90000s and 50000s for approaches A and B respectively, whereas for the Kirch-

hoff Integral computation, including its adjoint, 6000s. 60 checkpoints were

used, requiring the equivalent of two primal flow recomputations per optimiza-

tion cycle. Thus, the total computational cost for the sensitivity derivative

computation was around 6 and 3 days, for approaches A and B respectively,

without accounting for the additional overhead for mesh displacement and data

management.
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The computed sensitivity derivatives are presented on the side mirror of

the SAE body, by means of the so-called sensitivity maps. They stand for

the derivatives of the objective function w.r.t. the normal surface displacement,

practically eq. 24 with δxi

δbn
= ni, and give an insight into the local geometry

changes that may contribute to performance improvement. In fig. 6, areas that

must be pulled outwards in order to reduce J, eq. 5 , take blue colors whereas

areas that must be pushed inwards are marked in red.

The two aeroacoustic sensitivity maps computed with approaches A and B

are shown in fig. 6(a) and fig. 6(b) respectively. For both approaches, two main

sensitive areas appear, the mirror neck and the casing of the mirror glass. In

fig. 7, two cross sections over these two areas are presented. High sensitivities

can be seen on the downwind edges of both the upper and lower side of the neck.

As seen in fig. 7(b), flow separation occurs in this area, which creates pressure

fluctuations that in turn generate and radiate noise. Similarly, on the edges

around the casing of the mirror glass, the flow is disturbed by the geometry

curvature or specific design features, such as the small step on the underside of

the mirror, fig. 7(c). Although the sensitivities of both approaches focus on the

same areas, differences arise on the way the mirror surface should be displaced.

More distinctively, on the upper side of the mirror neck, approach A suggests

an outward diplacement on the part up to the downwind edge, where the sign

changes and this area should be pushed inwards. On the contrary, approach B

is dominated by an inward displacement on the upper side, with a small area of

outward normal displacement in between.

A morphing step was performed to show how this difference on the sensitivity

maps translates to objective function change. The mirror was parameterized us-

ing the volumetric B-Splines method, similarly to section 4. 256 control points,

8, 4 and 8 in the x-, y- and z-direction, respectively, are used to define the

part of the mirror geometry to be morphed. As seen in fig. 8, the control box

surrounds the neck of the mirror which is the area with the highest potential in

improvement. The placement of the bounding box is acceptable from the design

point of view as well, as areas important for rain water management, such as
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the mirror glass casing, are left intact. During the morphing, only the internal

control points are allowed to vary and can move in all three directions, giving

rise to 216 design variables in total. The maximum displacement of the control

points led to an around 1mm surface deformation.

The morphed geometries are presented in fig. 9 and the difference between

the two approaches can be seen. The objective function for the two geometries

was evaluated again. For approach A, the flow was recomputed from t = 0s

and for Ts = 1.3s, and the objective function was integrated over the last 0.3s

of the simulation. Approach B used the previous primal flow initial condition

at t = 1s and, then, the flow equations as well as the objective function were

computed for Ts = Tof = 0.3s. The objective functions were reduced by 17%

and 22% respectively, thus, each respective optimization problem is accurately

solved. An additional run was performed for morphed mirror of approach B,

using this time approach A, simulating a total of Ts = 1.3s and evaluating

the objective function over the last Tof = 0.3s. The obtained value yielded a

reduced objective function by 11% which, however, by taking into consideration

the sensitivity map comparison, is rather coincidental.

Consequently, this study shows through the comparison of the sensitivity

maps that, as expected based on the mathematical formulation, the adjoint

gradients of approach B are not consistent with the primal evaluation process of

approach A and may lead to a different solution. Whether this solution improves

the objective function evaluated with approach A cannot be ensured and its use

may be misleading for an optimization procedure.

In addition, the significance of the proposed methodology that includes the

grid displacement in its formulation can also be clearly visualized in fig. 6(c).

Similarly to section 4 and fig. 3, the sensitivity map computed based on the for-

mulation without the surface integral −
∫
SW

∂ma
i

∂xj
njnidS in the sensitivity deriva-

tives expression is presented. According to this map, an additional area on the

top part of the mirror neck must be pushed inwards. These sensitivities guide in

fact the optimization to the opposite direction, as the one that actually improved

the objective function, as shown in the one-step displacement of fig. 9(a).
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(a) Approach A: the flow and adjoint equations were solved for Ts = 1.3s, and the objective

function was evaluated for the time window of the last Tof = 0.3s of the simulation.

(b) Approach B: the flow and adjoint equations were solved from t = 1s, with the simulation

and objective function time windows coinciding Ts = Tof = 0.3s.

(c) Approach B: computed sensitivity map without taking into account the the adjoint grid

displacement equation.

Figure 6: Flow-induced sound reduction on the SAE body: Adjoint sensitivity maps targeting

at minimizing the radiated sound to the vehicle side window. Red areas must be pushed in-

wards whereas blue areas must be pulled outwards in order to minimize the objective function.

5.2. Optimizing the side mirror of the SAE body

The side mirror of the SAE body, is optimized here, using approach A, as

presented in subsection 5.1. Three optimization cycles were performed and the
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(a)

(b) (c)

(d)

Figure 7: Flow-induced sound reduction on the SAE body: Two cross-sections over the mirror

are presented. The first section covers the area around the mirror neck (depicted with the

orange plane, first row), whereas the second the area around the casing of the mirror glass

(depicted with the blue plane, first row). The primal (second row) and adjoint (third row)

velocity magnitudes are shown for the mirror neck (left) and casing (right) cross-sections.

averaged squared acoustic pressure fluctuation computed at the side window,

as defined in eq. 5 , was reduced by 35%. The maximum displacement was

around 2.6mm, and the total geometry displacement, projected on the normal
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Figure 8: Flow-induced sound reduction on the SAE body: Bounding box of the control points

of the volumetric B-Splines methods used to parameterize the mirror. The control points are

coloured based on their z-coordinate, and during the optimization loop, only the internal

points are allowed to vary.

(a) Approach A: the flow and adjoint equations were solved for Ts = 1.3s, and the objective

function was evaluated for the time window of the last Tof = 0.3s of the simulation.

(b) Approach B: the flow and adjoint equations were solved from t = 1s, with the simulation

and objective function time windows coinciding Ts = Tof = 0.3s.

Figure 9: Flow-induced sound reduction on the SAE body: Total normal displacement after

one morphing step with the volumetric B-splines method. Red areas were pushed inwards,

whereas blue areas were pulled outwards, in order to minimize the objective function.
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direction is presented in fig. 10. Here, red areas were morphed inwards, while

blue areas were morphed outwards. In fig. 11, the objective function J at each

receiver placed on the side window is presented, as computed for the starting

and optimized mirror geometry. The radiated sound has decreased in magnitude

which is associated to the influence that the geometry change had to the flow

and, thus, to sound generation. Moreover, by looking at the iso-lines of the

squared acoustic pressure on the window, it is seen that the directivity of the

generated sound field of the optimized mirror shape has moved upwind, affecting

in this way less the area of the window.

Figure 10: Flow-induced sound reduction on the SAE body: Total normal displacement

performed during the optimization (top view left, bottom view right). Red areas indicate

an inward to the surface displacement whereas blue areas an outward. With a maximum

displacement of 2.6mm, the time-averaged squared acoustic pressure fluctuation radiated from

the mirror to the side window was reduced by 35%.

6. Conclusions

The formulation of the continuous adjoint method for flow-induced sound

radiation with the Kirchhoff Integral is presented in this paper for the first time

in the literature. To predict the near- and far-field sound radiation from a body

in free-stream, an incompressible IDDES simulation is performed, to resolve

the noise creation phenomena, followed by the sound pressure propagation with

the Kirchhoff Integral method, which uses the hydrodynamic pressure and its

time derivative computed on the Kirchhoff surface, coinciding with the body’s

boundary.
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Figure 11: Flow-induced sound reduction on the SAE body: Time-averaged squared acoustic

pressure fluctuation radiated to the side window from the starting (left) and the optimized

(right) mirror. The optimization reduced the radiated sound magnitude and also pushed its

directivity upwind, to have a smaller influence on the window.

To the authors knowledge, the unsteady continuous adjoint method has never

been verified for unsteady turbulent flows or applied in problems of real-world

complexity. In this paper, the efficiency and accuracy of the proposed method-

ology is demonstrated not only for a mid-size academic test case but also for

a large-scale problem, the generic SAE body. In a 3D turbulent flow around

a cylinder, a good agreement between the adjoint gradients computed by the

proposed methodology and the FD gradients was achieved. It was shown that,

in aeroacoustic shape optimization problems, it is important to incorporate grid

displacement equations in the adjoint formulation, in order to account for grid

sensitivities. Otherwise, the sensitivity derivative computation is prone to in-

acurracies.

Furthermore, in the primal unsteady simulations, two time windows are

commonly defined; Ts, where the flow equations are solved and Tof , placed

at the end of Ts, where the objective function is evaluated. Their distinction

was taken into account in the adjoint development and the derivation of the

sensitivity derivative expression. A sensitivity map analysis was conducted for

minimizing flow-induced noise radiation from the side mirror of the SAE body

to its side window. It was demonstrated that, in order for the adjoint gradients
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to be consistent with the primal problem, the adjoint equations must be solved

over the exact time window Ts. In this case, the adjoint boundary conditions

that depend on the objective function, here the adjoint velocity on the body, are

active only over Tof . Solving the adjoint equations only for Tof , an approach

that may seem intuitively reasonable, computes different gradient values which

may be misleading during an optimization procedure. Based on these findings,

3 optimization cycles were performed and the obtained optimized shape of the

mirror of the SAE body was displaced by a maximum of 2.6mm. The objective

function, the time average of the squared sound pressure at the vehicle’s side

window, was minimized by 35%.

7. Acknowledgements

This work has been conducted within the ”Industrial Optimal Design using

Adjoint CFD” (IODA) project, funded by the European Union HORIZON 2020

Framework Programme for Research and Innovation under Grant Agreement

No. 642959.

References

[1] A. Jameson, Aerodynamic design via control theory, Journal of Scientific

Computing 3 (1988) 233–260.

[2] W. Anderson, V. Venkatakrishnan, Aerodynamic design optimization on

unstructured grids with a continuous adjoint formulation, Computers &

Fluids 28 (1999) 443–480.

[3] M. Giles, N. Pierce, Adjoint equations in CFD: duality, boundary condi-

tions and solution behaviour, AIAA Paper 1997-1850.

[4] M. Giles, N. Pierce, An introduction to the adjoint approach to design,

Flow, Turbulence and Combustion 65 (2000) 393–415.

[5] C. Othmer, Adjoint methods for car aerodynamics, Journal of Mathematics

in Industry 4 (6) (2014) https://doi.org/10.1186/2190–5983–4–6.

27



[6] E. Papoutsis, K. Giannakoglou, Continuous adjoint methods for turbu-

lent flows, applied to shape and topology optimization: Industrial ap-

plications, Archives of Computational Methods in Engineering (2014)

http://dx.doi.org/10.1007/s11831–014–9141–9.

[7] N. K. Juern Krueger, T. Rung, Adjoint volume-of-fluid approaches for

the hydrodynamic optimisation of ships, Ship Technology Research 65 (1)

(2018) 47–68.

[8] T. A. Tristan Dhert, J. R. Martins, Aerodynamic shape optimization of

wind turbine blades using a Reynolds-Averaged Navier-Stokes model and

an adjoint method, Wind Energy 20 (5) (2017) 909–926.

[9] B. Zhou, T. Albring, N. Gauger, C. I. da Silva, T. Economon, J. Alonso, An

efficient unsteady aerodynamic and aeroacoustic design framework using

discrete adjoint, in: 17th AIAA/ISSMO Multidisciplinary Analysis and

Optimization Conference, Washington, D.C., 2016.

[10] A. Carnarius, F. Thiele, E. Ozkaya, A. Nemili, N. Gauger, Optimal con-

trol of unsteady flows using a discrete and a continuous adjoint approach,

System Modeling and Optimization, IFIP Advances and Communication

Technology 391 (2013) 318–327.

[11] S. R. K. Beckett Y. Zhou, Nicolas R. Gauger, W. Schroeder, A discrete ad-

joint approach for trailing-edge noise minimization using porous material,

Computational Methods in Applied Sciences 36 (2015) 351–365.

[12] J. Ask, L. Davidson, The sub-critical flow past a generic side mirror and

its impact on sound generation and propagation, AIAA Paper 2006-2558

https://doi.org/10.2514/6.2006–2558.

[13] A. Lyrintzis, Surface integral methds in Computational Aeroacoustics -

From the CFD near-field to the (acoustic) far-field, International Journal

of Aeroacoustics 2 (2) (2003) 95–128.

28



[14] H. A. K.R. Meadows, Towards a highly accurate implementation of the

Kirchhoff approach for computational aeroacoustics, Journal of Computa-

tional Acoustics 4 (2) (1996) 225–241.

[15] K. S. Brentner, F. Farassat, Modeling aerodynamically generated sound of

helicopter rotors, Progress in Aerospace Sciences 39 (2-3) (2003) 83–120.

[16] J. E. Ffowcs Williams, D. L. Hawkings, Sound generation by turbulence

and surfaces in arbitrary motion, Philosophical Transactions of the Royal

Society of London 264A (1969) 321–342.

[17] I. Kavvadias, E. Papoutsis-Kiachagias, K. Giannakoglou, On the proper

treatment of grid sensitivities in continuous adjoint methods for shape op-

timization, Journal of Computational Physics 301 (2015) 1–18.

[18] A. Kabat vel Job, M. Hartmann, J. Sesterhenn, Prediction of the interior

noise level for automotive applications based on time-domain methods, in:

INTER-NOISE 2016, Hamburg, 2016.

[19] P. Spalart, S. Allmaras, A one-equation turbulence model for aerodynamic

flows, AIAA Paper 1992-0439.

[20] M. Shur, P. Spalart, M. Strelets, A. Travin, A hybrid RANS-LES approach

with delayed-DES and wall-modelled LES capabilities, Journal of Heat and

Fluid Flow 29 (6) (2008) 1638–1649.

[21] A. Zymaris, D. Papadimitriou, K. Giannakoglou, C. Othmer, Continuous

adjoint approach to the Spalart-Allmaras turbulence model for incompress-

ible flows, Computers & Fluids 38 (8) (2009) 1528–1538.

[22] A. Travin, M. Shur, M. Strelets, P. Spalart, Physical and numerical up-

grades in the detached-eddy simulation of complex turbulent flows, in:

412th Euromech Colloquium on LES and Complex Transitional and Tur-

bulent Flows, Munich, Germany, 2012.

29



[23] Q. Wang, P. Moin, G. Iaccarino, Minimal repetition dynamic check- point-

ing algorithm for unsteady adjoint calculation, SIAM Journal on Scientific

Computing 31 (4) (2009) 2549–2567.

[24] G. Karniadakis, G. Triantafyllou, Three-dimensional dynamics and transi-

tion to turbulence in the wake of bluff objects, Journal of Fluid Mechanics

238 (1992) 1–30.

[25] E. Papoutsis-Kiachagias, N. Magoulas, J. Mueller, C. Othmer, K. Gian-

nakoglou, Noise reduction in car aerodynamics using a surrogate objective

function and the continuous adjoint method with wall functions, Comput-

ers and Fluids 122 (2015) 223–232.

[26] M. Hartmann, J. Ocker, T. Lemke, A. Mutzke, C. Schwarz, H. Tokuno,

R. Toppinga, P. Unterlechner, G. Wickern, Wind noise caused by the a-

pillar and the side mirror flow of a generic vehicle model, in: AIAA Pa-

per 2012-2205, 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA

Aeroacoustics Conference), Colorado Springs, USA.

30


