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Abstract: 

We present a novel, simple and cost-effective method for patterning transparent conductive 

oxides (TCO) in order to form solar cell’s metal grid by electro-plating. Self-assembled 

monolayers (SAMs) are prepared by dipping substrates in or spraying TCO with perfluorinated 

and alkylated phosphonic acid solutions. The investigated chemistry and explored deposition 

parameters on Indium Tin Oxide (ITO) have resulted in highly hydrophobic surfaces with 

exceptional coverage of the TCO by the SAMs. The resistance of the deposited layers to acidic 

plating conditions has been a challenge but layers at optimized processing conditions have 

demonstrated masking properties for nickel electroplating. 
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Highlights:  

 Dense, self-assembled monolayers of phosphonic acids on indium tin oxide surfaces of 

silicon heterojunction solar cells are produced by a simple and cost-effective spraying 

method. 

 Good chemical resistance to highly acidic copper electrolyte is provided by the self-

assembled monolayer and low degradation of ITO is observed after 10 minute immersion 

in solutions of pH < 1. 

 Thin nickel lines are obtained on a patterned self-assembled monolayer on ITO by 

electroplating with little ghost-plating.  

 

1. Introduction 



At the time silicon-based homojunction solar cells still dominate the solar industry, silicon 

hetero-junction (HJT) solar cells have the intrinsic qualities to overthrow it: low surface 

recombination losses, high operating voltages, simple structure with low manufacturing cost 

potential, low temperature and a native bifaciality [1]. The conductor grids for HJT cells are 

typically made of screen-printed silver paste with significant costs compared to standard 

homojunction solar cells. To prevent silicon passivation damages, curing temperature is limited 

to value below 250°C. However this low curing temperature causes a higher resistivity of the 

paste compared to standard firing through ones.  [2,3]. 

Being a highly conductive material and hundred times cheaper than silver, copper is a promising 

candidate to boost solar cell efficiency while reducing material costs. Copper plating is thus seen 

as an interesting alternative to screen-printed silver. The technological challenges for plating on 

HJT cells consist in first reaching precise and affordable TCO patterning, then demonstrating a 

high adhesion of copper grid onto the cell TCO with a low contact resistance, high line 

conductance and minimum shading (< 30 µm line width). We have previously developed 

advanced processes for patterning and electroplating of copper, yielding demonstration of high 

performance solar cells, qualified with  24.7% certified efficiency for a cell with busbars [4,5]. 

The process of record is based on a patterning approach using a PVD seed layer deposited on the 

full wafer surface combined with inkjet printing of a hotmelt mask and etch-back processes. 

We propose here a novel concept based on self-assembled monolayers (SAMs) in order to obtain 

patterned copper lines on TCOs. Since SAMs utilize an extremely small amount of material, this 

approach could achieve plating selectivity with ultra-low costs. Breen et al. described previously 

the use of microcontact printing and wet etching to pattern films of the transparent conductors 

indium tin oxide (ITO) and indium zinc oxide (IZO) [6]. Luscombe et al. used perfluorinated 



silane SAMs deposited on ITO via compressed carbon dioxide, patterned by e-beam, as etch-

resist to produce electrodes [7]. In both cases, a low concentration solution of oxalic acid is used 

to etch the TCOs, and the patterning methods are difficult to scale up at low costs. It was also 

shown that SAMs of phosphonic acid derivatives could act effectively as anticorrosion layers on 

metals [8]. She et al. reported the used of self-assembled monolayers of thiols on gold as 

template for electrodeposition of gold or copper [9,10]  We report here the formation of SAMs of 

long-chained phosphonic acids and their resistance to very low pH copper electrolyte. We also 

present preliminary results of the application of SAM layers as a patterned resist to plate thin 

lines of nickel, nickel here being meant to become an adhesion layer prior to copper plating. 

2. Materials and methods 

2.1 Materials 

12,12,13,13,14,14,15,15,15,15-nonafluoropentadecylphosphonic acid (fC15-PA), 

12,12,13,13,14,14,15,15,16,16,17,17-tridecafluoroseptadecylphosphonic acid (fC17-PA), 

12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,19-Heptadecafluorononadecylphosphonic 

acid(fC19-PA), and 10,11-Bis(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Heptadecafluorononyl)icosane-

1,20-diyldiphosphonic acid (bis-fC19-bisPA) were purchased from Sikemia and used as 

received. Chemical formulas are shown in Figure 1. Octadecylphosphonic acid (C18-PA) was 

purchased from Sigma-Aldrich and used as received. Ethanol (VLSI grade) was purchased from 

KMG Ultra Pure Chemicals SAS (France) and used as received.  

Nickel electrolyte Ni-sulphamate HS from Atotech GmbH was used for plating tests. 



Flat substrates were prepared by depositing 115 nm ITO by sputtering from a target with 

composition 90/10 indium oxide/tin oxide by weight using an Indeotec Octopus II sputtering tool 

on single side polished silicon wafers. The wafers were supplied by Si-Mat, Germany.   

Structured substrates were heterojuction cell precursors made of pyramid-textured n-type 

monocrystalline silicon wafers with amorphous Si layers and ITO on both sides. The thickness of 

ITO measured on the glass reference is 115 nm. The thickness on a textured substrate is 

calculated to be 68 nm. The solar cells precursors were provided by CEA INES. 

2.2 Self-assembled monolayers deposition 

After cleaning and activating the TCO surface by an oxygen plasma (PlasmaLab 80+, Oxford 

instruments, power: 100W, pressure: 200mTorr, Flow: 50sccm O2), the samples were either 

immersed in or sprayed by a solution of 5 mM phosphonic acid in ethanol. The spray-coating 

was performed at room temperature using a Nordson spray head attached to a Janome dosing 

system. Immersion was done at 70°C during one hour. The excess material was rinsed off with 

ethanol, dried with nitrogen flow and the samples were cured in a low-vacuum oven at 120°C.  

2.3 Wettability measurements 

The wettability changes of the surfaces were characterized by measuring the contact angle of 

water sessile droplets deposited on the sample. Advancing and receding water contact angles 

were determined using a Drop Shape Analysis System DSA30 provided by Krüss (Hamburg, 

Germany). Standard deviations were calculated using three measurements and the error bars 

shown on the graphs correspond to the 95% confidence intervals. 

2.4 Electrolyte immersion tests 



A highly acidic, electrolyte solution of 200 g/L of copper sulfate pentahydrate (corresponding to 

50 g/L copper ions) and 50 g/L sulfuric acid in water was used to assess the stability of the 

phosphonic acid self-assembled monolayers. SAMs covered samples were partially immersed in 

a commercial copper electrolyte (pH < 1) during 10 minutes, rinsed in water and dried. The 

samples were characterized before and after immersion by optical microscopy and contact angle 

measurements 

2.5 Patterning method 

SAMs covered samples were patterned by covering with a silicon hard mask comprising thin 

lines of different width, placing the sample for 30 s in a RIE oxygen plasma (PlasmaLab 80+, 

Oxford Instruments). The removal of the SAMs was observed by checking the wettability 

patterns on the surface. The parts exposed to the plasma were wetting water, while the parts 

covered by the mask retained their hydrophobicity.  

2.6 Electroplating tests and characterization. 

Plating test were conducted in a small laboratory setup with 0.5 liter Nickel electrolyte, Ni-

sulphamate HS at 45°C. The pH of the electrolyte was 4.4. The samples were textured 

heterojunction precursors covered with SAMs on both sides and cut in to pieces of 5 cm x 5 cm. 

For contacting the SAMs coating has been removed on one edge of the sample by dipping in 

concentrated sulfuric acid. The sample has been the contacted for plating with a conductive 

copper tape directly on the TCO. The samples have been plated at low current density, 1.5 A/dm² 

for 5 minutes and evaluated visually and by confocal microscope for plating selectivity or 

parasitic plating on SAM coated area (ghost-plating) respectively.  

 



3. Results and discussion 

3.1 Wettability and effect on the resistance to highly acidic electrolytes 

We first measured the advancing and receding water contact angles on pyramid-textured solar 

cell precursors coated with intrinsic and doped hydrogenated amorphous silicon (a-Si:H) and 

ITO on both sides(n-side and p-side).  

Figure 2 shows the effect of covering the surface with a SAM prepared with fC15-PA. Due to the 

high roughness of the surface, the droplets of water are in so-called Wenzel state prior to the 

SAM spraying as shown by the large hysteresis between advancing and receding water contact 

angle [11,12]. Once covered with the SAM, the water droplets are in Cassie Baxter state [13]. 

The surface becomes superhydrophobic with advancing and receding well over 160°. Moreover a 

very low contact angle hysteresis was observed, thus attesting the high coverage of the surface 

by the SAM. The effect of the cell polarity on the measured contact angles appears to be 

minimal, as expected since the ITO surface is the same on both sides.   

The advancing and receding water contact angles were also measured after immersing a sample 

in a highly acidic copper electrolyte solution for 10 minutes, which is equivalent to the time that 

would be used during copper electroplating. The results are shown in Figure 3. The 

superhydrophobicity was not affected by the immersion in the electrolyte. To separate the effect 



of the surface chemistry and the high roughness of the functional substrates, ITO covered silicon 

wafers with very low roughness were prepared for all other measurements in this section. 

SAMs were prepared with the perfluorinated phosphonic acids described in Figure 1 as well as 

octadecyl phosphonic acid (C18-PA) on low roughness ITO. Dynamic contact angles were 

measured before and after 10 minutes immersion in a highly acidic copper electrolyte. The 

results are shown in Figure 4. From these data, we can infer that the ITO is not well protected for 

that amount of time by the fC15-PA, f17-PA, f19-PA, but partially protected by the bis-f19-bis-

PA and C18-PA. It is likely that the latter molecules are more organized at the interface. 

Fluorocarbon chains are known to cause disruption in inter-chain packing [14]. While 

hydrocarbon chains present a linear structure, perfluorinated chains form helical structure and 

therefore self-assemble in less compact and more disordered layers [15]. 

Observations of the surface after immersion also confirm a lesser attack of the ITO surface when 

covered by bis-f19-bis-PA and C18-PA molecules. The results are shown in Figure 5. When the 

surface was not exposed, a smooth white image is observed on the optical microscope. However, 

in the parts that were immersed, especially on the samples covered by fC15-PA and fC17-PA, 

the ITO was visibly attacked and etched by the solution and a blue background is observed. 

Various patterns are also observed. From these images, it is clear that while there is an 

improvement in the protection granted by the longer fC19-PA, the C18-PA and bis-fC19-bis-PA 

provide the best protection against corrosion by the highly acidic copper electrolyte. We interpret 

this as a result of a better packing of the hydrophobic chains in the self-assembled monolayers. 

3.2 Preliminary results of nickel plating tests on patterned self-assembled monolayers 



The process flow for production of HJT solar cells requires a first layer of nickel to be 

electroplated on the TCO in order to provide sufficient adhesion for the copper lines. Results 

discussed presently correspond to nickel plating tests. Figure 6 shows the patterned nickel lines 

obtained in a mild (pH=4.4) sulphamate nickel electroplating bath. The tests were done on f-

C15-PA SAMs with and without patterning by removing the SAM using oxygen plasma 

combined with a hard mask. Prior to the electroplating step, one sample edge is dipped in 

concentrated sulfuric acid to remove the SAM and to allow contacting.  

The unpatterned sample shows that the plating is selective and the SAM works as a resist. On the 

patterned samples, nickel lines are well defined and the plating limit shows little blurring (Figure 

7). Depending on the length of time of the plasma patterning step, either 15 s or 30 s, the thinnest 

conductive line observed varies in width and length. For 15 s removal time, we measured a width 

of the thinnest line of 62.5 μm and height of 2.5 μm, while for 30s removal time, the measured 

width of the thinnest line is 82.1 μm and the height 3.6 μm. Therefore the nanolayer formed by 

the perfluorinated phosphonic acid molecules allows the electroplating of μm-high Ni lines. 

However the patterning has not been optimized. These first tests were done with a simple home-

made mask produced by laser engraving silicon wafers. The patterning is still under 

development. We also plan to test laser patterning of the SAM. 

 In this process, the extremely low amount of material including solvents used for the SAM 

spraying makes our process cost-effective and eco-friendly.   

However some ghost-plating is observed on the surface where the SAM remained after the 

plasma treatment. We plan to improve this by strengthening the organization of the SAM using 

the C18-PA and bis-C19-bis-PA molecules described in section 3.1. Some small nickel dots are 

also observed in places as shown on Figure 6. We assume that the SAM may have been damaged 



by the contact with the hard-mask on the top of the microstructures of the substrates. It has been 

noticed (data not shown here) that the SAM is very sensitive to handling and might be easily 

rubbed off. In order to increase the plating quality, we will also investigated modifications of the 

patterning method to avoid damaging the SAM.  

 

4. Conclusions 

A spraying method was developed to produce perfluorinated and alkyl phosphonic acids self-

assembled monolayers on pyramid-textured and polished silicon coated with indium tin oxide 

(ITO) surfaces. On textured substrates, superhydrophobic behavior was observed. The dynamic 

water contact angle measurements show very small hysteresis between the advancing and 

receding contact angles. This demonstrate the high quality of the self-assembly of molecules on 

the surface. We showed that the self-assembled monolayer provide ITO with a resistance to 

highly acidic electrolytes electroplating solutions. We are thus able to use the SAM as a resist for 

electroplating nickel. The layer of phosphonic acids can be patterned by a RIE oxygen plasma 

combined with a silicon hard mask. We have obtained well-defined, μm-thick conductive nickel 

lines by electroplating on the ITO substrate. We plan to improve the quality of the SAMs, 

patterning and to use to SAMs for copper electroplating in the future.  
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Figure 1: chemical formulas of all perfluorinated phosphonic acids used in this work. a) 

12,12,13,13,14,14,15,15,15,15-nonafluoropentadecylphosphonic acid (fC15-PA), b) 

12,12,13,13,14,14,15,15,16,16,17,17-tridecafluoroseptadecylphosphonic acid (fC17-PA), c) 

12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,19-Heptadecafluorononadecylphosphonic 

acid(fC19-PA), and d) 10,11-Bis(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Heptadecafluorononyl)icosane-

1,20-diyldiphosphonic acid (bis-fC19-bisPA). 

 

Figure 2: Water contact angles on structured ITO surfaces with different doping (n- and p-types) 

before and after applying the perfluorinated phosphonic acid SAM. The advancing contact angle 

is in dark grey and the receding in light grey.  



 

Figure 3: Water contact angles on fC15-PA covered ITO microstructured substrates with 

different doping (n- and p-types) before and after immersing the SAM in highly acidic copper 

electrolyte. The advancing contact angle is in dark grey and the receding in light grey. 

 

Figure 4: Dynamic water contact angles of various SAMs on very low roughness ITO surface. 

The contact angles were taken before (dark grey) and after immersion (light grey bars) during 10 

min in highly acidic copper electrolyte. When the measured value of the receding contact angle 

was <10°, it was deemed unreliable and arbitrarily replaced by the value of 10°.   



 

Figure 5: optical microscope images taken with a 5x objective after exposure to a copper 

electrolyte solution at very low pH (<1) during 10 minutes. When the surface was not exposed, a 

smooth white image is observed. When the ITO was visibly attacked and etched by the solution, 

a blue image is observed. Microstructures are also observed. 

 

Figure 6: Pictures of three samples after nickel electroplating on the n-side (top) and p-side 

(bottom) using a fC15-PA SAM as resist. The top of each sample was dipped in a sulfuric acid 

solution to partially remove the SAM in order to make a contact.  From left to right: 1. 

unpatterned sample placed in plating solution. Some ghost-plating is observed mostly on the p-

side of the sample. 2. Sample patterned on the n-side using a silicon hard mask by a directional 

RIE O2 plasma during 15s. Well defined plating lines are observed as well as some residual 

ghost-plating.  Unfortunately the sample broke during the plating. 3. Sample patterned on the n-



side using a silicon hard mask by a directional RIE O2 plasma during 30s. Well defined plating 

lines are observed as well as some residual ghost-plating. Unfortunately the sample broke during 

the plating. 

 

Figure 7: scanning confocal microscopy images taken on samples shown in Figure 6. a) images 

taken on the thinnest line of the sample patterned during 15s. Ghost-plating is evidenced on some 

of the masked parts. b) images taken on the thinnest line of the sample patterned during 30s. 

Some of the phosphonic acid layer may have been damaged by the hard mask as evidenced by 

the white dots on the masked part.  


