Conference paper Open Access

A Mobile Visual Analytics Approach for Instant Trend Analysis in Mobile Contexts

Dirk Burkhardt; Kawa Nazemi; Arjan Kuijper; Egils Ginters


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Allan, J., Papka, R., Lavrenko, V., 1998. On-line new event detection and tracking. In Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval, pp. 37-45. ACM.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Booth, P., 2014. An Introduction to Human-Computer Interaction. Psychology Press.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Burkhardt, D., Breyer, M., Nazemi, K., Kuijper, A., 2011. Search Intention Analysis for User-Centered Adaptive Visualizations. Universal Access in Human-Computer Interaction. Design for All and eInclusion. UAHCI 2011. Lecture Notes in Computer Science, 6765. Berlin, Germany: Springer.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Burkhardt, D., Pattan, S., Nazemi, K., Kuijper, A., 2016. Search Intention Analysis for Task- and User-Centered Visualization in Big Data Applications. Procedia Computer Science, 104, pp. 539-547. Elsevier.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Card, S. K., Mackinlay, J. D., Shneiderman, B., 1999. Readings in Information Visualization: Using Vision to Think. 1st ed. Morgan Kaufmann.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Chandler, R. E., Scott, M., 2011. Statistical methods for trend detection and analysis in the environmental sciences, John Wiley &amp; Sons.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Ginters, E., Aizstrauts, A., Dreija, G. et al., 2014. Skopje Bicycle Inter-modality Simulator – einvolvement through simulation and ticketing. In Proceedings of 26th European Modelling &amp; Simulation Symposium (EMSS 2014), pp. 557- 563. Bordeaux, France.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Gray, K. L., 2007. Comparison of Trend Detection Methods. PhD thesis, Department of Mathematics, University of Montana.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Havre, S., Hetzler, E., Whitney, P. Nowell, L., 2002. Themeriver: Visualizing thematic changes in large document collections. IEEE transactions on visualization and computer graphics, 8(1), pp. 9– 20. IEEE.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Hwang, M, Inm M, Ha, S., Lee, K., 2017. Tasis: Trend analysis system for international standards. In 2017 ITU Kaleidoscope: Challenges for a Data- Driven Society (ITU K), pp. 1-8, IEEE.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Kim, Y., Tian, Y., Jeong, Y., Jihee, R., Myaeng, S.-H., 2009. Automatic discovery of technology trends from patent text. In Proceedings of the 2009 ACM symposium on Applied Computing, pp. 1480- 1487. ACM.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Kontostathis, A., Galitsky, L. M., Pottenger, W. M., Roy, S., Phelps, D. J., 2004. A survey of emerging trend detection in textual data mining. In Survey of Text Mining, pp. 185-224. Springer.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Lent, B., Agrawal, R., Srikant, R., 1997. Discovering trends in text databases. In KDD, volume 97, pp. 227–230.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Liu, S., Zhou, M. X., Pan, S., Quian, W., Cai, W., Lian, X., 2009. Interactive, topic-based visual text summarization and analysis. In Proceedings of the 18th ACM conference on Information and knowledge management, pp. 543–552. ACM.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Nazemi, K., Burkhardt, D., 2019. Visual Analytics for Analyzing Technological Trends from Text. In Proceedings of 23rd International Conference Information Visualisation (IV), pp. 191-200. IEEE.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Nazemi, K., Burkhardt, D., 2019. Visual analytical dashboards for comparative analytical tasks – a case study on mobility and transportation. Procedia Computer Science, 149, pp. 138-150. Elsevier.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Nazemi, K., Burkhardt, D., Breyer, M., Stab, C., Fellner, D. W., 2010. Semantic Visualization Cockpit: Adaptable Composition of Semantics- Visualization Techniques for Knowledge- Exploration. Proceedings of Interactive Computer Aided Learning (ICL 2010), pp. 163–173. Kassel, Germany: Kassel University Press.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Nazemi, K., Burkhardt, D., Ginters, E., Kohlhammer, J., 2015. Semantics Visualization - Definition, Approaches and Challenges. Procedia Computer Science, 75, pp. 75-83. Elsevier.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Nazemi, K., Burkhardt, D., Hoppe, D., Nazemi, M., Kohlhammer, J., 2015. Web-based Evaluation of Information Visualization. In Procedia Manufacturing, Vol. 3, pp. 5527-5534. Elsevier.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Nazemi, K., Retz, R., Burkhardt, D., Kuijper, A., Kohlhammer, J., Fellner, D. W., 2015. Visual trend analysis with digital libraries. Proceedings of the 15th International Conference on Knowledge Technologies and Data-driven Business (i-KNOW '15). New York, USA: ACM.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Pottenger, W. M., Yang, T.-h., 2001. Detecting emerging concepts in textual data mining. Computational information retrieval, 100.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Roudaut, A., 2009. Visualization and interaction techniques for mobile devices. In CHI'09 Extended Abstracts on Human Factors in Computing Systems, pp. 3153-3156. ACM.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Sharma, S., Swayne, S. A., Obimbo, C., 2016. Trend analysis and change point techniques: a survey. Energy, Ecology and Environment, 1(3), 123-130.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Shneiderman, B., 1996. The eyes have it: a task by data type taxonomy for information visualizations. Proceedings 1996 IEEE Symposium on Visual Languages, pp. 336-343. Boulder, USA.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Think Design, 2018. Trend Analysis. Available from: https://think.design/user-design-research/trendanalysis/ [accessed 14/04/2019].</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Wang, Y., Zhou, L.-Z., Feng, J.-H., Xie, L., Yuan, C., 2006. 2D/3D Web Visualization on Mobile Devices. Web Information Systems–WISE 2006, pp. 536-547.</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Mobile Visual Analytics</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Visual Trend Analysis</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Decision Support Systems</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Business Analytics</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Human-Computer Interaction</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Information Visualization</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Mobile Devices</subfield>
  </datafield>
  <controlfield tag="005">20200120170955.0</controlfield>
  <controlfield tag="001">3473041</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">18-20 September 2019</subfield>
    <subfield code="g">VARE2019</subfield>
    <subfield code="a">The 5th International Conference of the Virtual and Augmented Reality in Education</subfield>
    <subfield code="c">Lisbon, Portugal</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Human-Computer Interaction &amp; Visual Analytics Research Group, Darmstadt University of Applied Sciences</subfield>
    <subfield code="0">(orcid)0000-0002-2907-2740</subfield>
    <subfield code="a">Kawa Nazemi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Computer Science, TU Darmstadt, Darmstadt, Germany</subfield>
    <subfield code="0">(orcid)0000-0002-6413-0061</subfield>
    <subfield code="a">Arjan Kuijper</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Riga Technical University, Riga, Latvia</subfield>
    <subfield code="0">(orcid)0000-0003-2394-6109</subfield>
    <subfield code="a">Egils Ginters</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2124486</subfield>
    <subfield code="z">md5:5287159005d85b9f9c3898e0d337bfe1</subfield>
    <subfield code="u">https://zenodo.org/record/3473041/files/VARE2019_MobileTrendAnalytics.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://www.msc-les.org/conf/vare2019/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-09-18</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-h_da</subfield>
    <subfield code="p">user-h_da-vis</subfield>
    <subfield code="p">user-visual-trend-analytics</subfield>
    <subfield code="o">oai:zenodo.org:3473041</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Human-Computer Interaction &amp; Visual Analytics Research Group, Darmstadt University of Applied Sciences</subfield>
    <subfield code="0">(orcid)0000-0002-6507-7899</subfield>
    <subfield code="a">Dirk Burkhardt</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A Mobile Visual Analytics Approach for Instant Trend Analysis in Mobile Contexts</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-h_da</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-h_da-vis</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-visual-trend-analytics</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Other (Attribution)</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The awareness of market trends becomes relevant for a broad number of market branches, in particular the more they are challenged by the digitalization. Trend analysis solutions help business executives identifying upcoming trends early. But solid market analysis takes their time and are often not available on consulting or strategy discussions. This circumstance often leads to unproductive debates where no clear strategy, technology etc. could be identified. Therefore, we propose a mobile visual trend analysis approach that enables a quick trend analysis to identify at least the most relevant and irrelevant aspects to focus debates on the relevant options. To enable an analysis like this, the exhausting analysis on powerful workstations with large screens has to adopted to mobile devices within a mobile behavior. Our main contribution is the therefore a new approach of a mobile knowledge cockpit, which provides different analytical visualizations within and intuitive interaction design.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">isbn</subfield>
    <subfield code="i">isPartOf</subfield>
    <subfield code="a">978-88-85741-41-6</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3473040</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="g">11--19</subfield>
    <subfield code="b">CAL-TEK SRL</subfield>
    <subfield code="a">Rende, Italy</subfield>
    <subfield code="z">978-88-85741-41-6</subfield>
    <subfield code="t">Proceedings of the International Conference of the Virtual and Augmented Reality in Education</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3473041</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
38
27
views
downloads
All versions This version
Views 3838
Downloads 2727
Data volume 57.4 MB57.4 MB
Unique views 2727
Unique downloads 2121

Share

Cite as