
A Context-aware Service for Authorizing Multi-Cloud
Deployments

Yiannis Verginadis1, Ioannis Patiniotakis1, Gregoris Mentzas1
1 Institute of Communications and Computer Systems,

National Technical University of Athens,
9 Iroon Polytechniou Str., Athens Greece
{jverg, ipatini, gmentzas}@mail.ntua.gr

Abstract. The most recent advancements in cloud computing, highlight the
need for supporting deployments on virtualised resources bounded to the data-
intensive application requirements and not limited by the strict boundaries of
each available cloud provider. Towards this direction, one important challenge
is the appropriate protection of the software infrastructure used for
automatically performing application components deployment over multi-
clouds. Specifically, we discuss the requirements and introduce a novel
attribute-based access control mechanism, able to cope with potential
cybersecurity threats that may compromise the deployment of multi-cloud
applications. We attempt to tackle the authorization issues from two different
perspectives; namely, coping with the “access control” to various platform
components and the “pre-authorization” of application deployment and data
placement actions using multiple cloud providers.

1 Introduction

In recent times, there is an abundance of cloud services offered from a vastly
increasing number of cloud providers, each one with its own advantages or
shortcomings. Finding opportunities where the benefits of each provider are exploited
at the same time, while coping with the ever-increasing requirements of the modern
data-intensive cloud applications, has become imperative [1]. A generic challenge is
to overcome scalability, resiliency, and security issues faced by big data and data-
intensive applications on distributed platforms by using transparent and optimized
multi-cloud resource provisioning [1]. One of the critical issues towards tackling this
generic challenge is to design and develop the appropriate methods and tools for
adequately protecting the platform components that make possible the optimized
application placement on multi-clouds. We use as an example the platform presented
in [2] where decision and optimization components (called Upperware) are used for
ingesting user-defined application placement requirements, constraints and
optimization goals in order to provide optimized decisions on initial placement or
reconfigurations of data-intensive applications on multi-clouds. A second part of such
a platform involves a set of components that interface with the required providers for
commissioning virtual resources and deploying application components according to
the initial placement or the reconfiguration decisions of the Upperware components.

This platform [2] follows a model-driven engineering approach, where models as first
class citizens, initially capture placement requirements and optimization goals,
providing valuable input for analysis and decision making with respect to multi-cloud
application placement and last they are transformed to executable service graphs that
guide the placement or reconfiguration actions across clouds.

Nevertheless, the list of the main risks associated with clouds is very long, and
even longer for multi-clouds [3]. At the top of this list, we find the improper identity
management, insufficient credentials and access control, unsecured application
programming interfaces (APIs) [4]. Although there are several security-related topics
that a platform that undertakes applications placement on multi-clouds should cover
(e.g. cloud providers credentials management, component authentication, encrypted
communication etc.), in this work we are focusing on an advanced authorization
module, based on the Attribute-based Access Control (ABAC) paradigm. This
mechanism is designed to provide access control and pre-authorization of any
deployment plans that may be implemented by such a platform. We note that such
security related capabilities are applicable to any application placement scenario but
we mainly focus on data-intensive applications due to the inherent additional
requirements for efficiency that introduce. The introduction of this kind of
authorization capabilities, ensures that only eligible entities (users or components) can
access protected platform resources and apply certain operations on them. Each
access attempt to a resource is checked against a set of access control policies. During
authorization checking, various stated and contextual information must be considered;
this information relates to the requestor (i.e. user or component), the resource being
accessed (e.g. data, methods etc.), the attempted operation as well as other
environment data (e.g. date, component operational status, etc.). Beyond access
control, the authorization infrastructure should be consulted on whether a given
application deployment plan, generated by the appropriate decision and optimization
components, complies with a set of deployment policies. Such policies may
encompass constraints and limitations referring to application deployment (e.g. total
cost or number of virtual machines deployed or location of resources). In this way, the
described security enhancement of the platform leads to a protected operation of all
critical software that makes decisions and implements placement or reconfiguration
actions regarding multi-cloud deployments.

The rest the paper involves a relevant state-of-the-art analysis which is provided in
section 2, while in section 3, we discuss the requirements of the developed service
called Melodic Authorization Service. In section 4, we provide the design details of
this mechanism, while in section 5 the implementation specifics of this service are
described. Last, we conclude with section 6, where the next steps of this work are
discussed.

2 Related work on Access Control

Several access control models have been proposed in the literature and used in
software products. These models provide a framework and a method of how
resources, requestors, operations, and rules may be combined to produce and enforce

an access control decision. Some of the most well-known models are the
Discretionary Access Control (DAC) [5], the Mandatory Access Control (MAC) [6],
the Identity-Based Access Control (IBAC) [6], the Role-Based Access Control (RBAC)
[7] and the Attribute-Based Access Control (ABAC) [7]. Out of the most prominent
paradigms is the ABAC, especially if we consider the dynamic characteristics of the
cloud computing domain. ABAC uses policies that comprise rules, which in turn
comprise logical conditions on several different attributes. Typically, each rule
contains at least a condition (i.e. boolean expression) and a decision (permit or deny)
to reach when the condition is true. Policies combine the outcomes of rules and yield
the final decision using certain outcome combination methods. Attributes can be
properties of the requesting entity, of the resource being accessed, of the operation
requested, or any other contextual information found in the so-called external
environment enclosing the interacting entities. Thus, these attributes are not limited in
number or in type as in previous paradigms (e.g. RBAC which only considers the role
of the access requesting entity).

Table 1. Java-based, open source, XACML tools

Product XACML
Version

License Latest Release Findings

WSO2 Balana1

3.0, 2.0, 1.x Apache 2.0 Mar 2018 Based on Sun's XACML

The most used XACML
implementation so far

Authzforce CE2 3.0 Apache 2.0 Apr 2018 Lack of clear documentation
for extensions development

JBoss Picketbox3 2.0 LGPL 2.1 Feb 2011 Merged with Keycloak
project since 2015

Xacml4j4 3.0, 2.0 GPL 3.0 Jul 2014 No recent activity at Github
since 2014

XACML Light5 2.0 n/a Apr 2013 PDP & PAP only
Heras AF6 2.0 Apache 2.0 Aug 2016 Basic XACML 2.0

implementation
OpenAZ7 3.0 Apache 2.0 Mar 2016 Retired since Aug 2016
Sun's XACML8 2.0, 1.x Open source Dec 2010 No active support anymore

There are a few reference implementations of the ABAC model, but among the
most important ones are the eXtensible Access Control Markup Language (XACML)
and the Next Generation Access Control (NGAC) [8]. It is important to note that
XACML seems to be the most widely used ABAC implementation model, since it

1 https://github.com/wso2/balana
2 https://authzforce.ow2.org/
3 http://picketbox.jboss.org/
4 https://github.com/xacml4j-opensource/xacml4j.github.io
5 http://xacmllight.sourceforge.net/
6 https://bitbucket.org/herasaf/herasaf-xacml-core
7 http://incubator.apache.org/projects/openaz.html
8 http://sunxacml.sourceforge.net/

enjoys worldwide industrial adoption in sectors like banking, healthcare, and
insurance [9]. XACML is an XML-based, open-standard language promoted by
OASIS, for expressing authorization policies and querying access to resources.
Evaluating an access request to a resource, with regards to an XACML policy, may
result in one of these four values: Permit, Deny, Indeterminate (an error occurred or
needed values were missing) or Not Applicable (no related policy found). The
XACML specification defines five main components that handle access decisions; the
Policy Enforcement Point (PEP), Policy Administration Point (PAP), Policy Decision
Point (PDP), Policy Information Point (PIP), and a Context Handler (CH) [8]. Since
XACML introduction, several compliant frameworks have been developed and
offered, both as open source software (Table 1) as well as proprietary products.

We note that we have thoroughly discussed the numerous limitations of previous
works that do not follow the ABAC paradigm or its reference implementations for
coping with the challenges of data authorization in dynamic multi-cloud environments
[4]. In addition, this work proceeds further than previous efforts that try to overcome
the basic syntactic descriptions by capturing the knowledge that lurks behind policies
and rules in the sense that the relations between the attributes used for access control
are considered [4]. To the best of our knowledge such a context-aware access control
mechanism has not been implemented for securing the model-driven engineering
interactions, within platform components that enable multi-cloud deployments and
reconfigurations. Such a mechanism aspires to alleviate the repercussions of any
potential components’ compromise, coming from external adversaries, by authorizing
in a context-aware manner any updates on the models used.

3 Melodic Authorization Service Requirements

Authorization refers to a security mechanism that determines and enforces access
privileges of a requesting entity, related to resources and application features. In our
approach, this service materialises two objectives. First, the supply of a security-by-
design access control framework for protecting all the critical platform components
that undertake the task of deploying application components over several multi-cloud
resources. A platform that undertakes the decision-making and control of the way that
applications can be deployment in multi-clouds, comprises a set of network-connected
microservices, distributed over an intranet or a (virtual) private network. Despite the
significant advantages of this approach, certain attack vectors exploiting the
networked and distributed nature of the platform are possible (e.g. database-related
and denial-of-service attacks). Furthermore, we consider the semi-honest adversarial
model, where a malicious cloud provider can intercept all messages and may attempt
to exploit them in order to learn information that otherwise should remain private. In
order to ensure a sufficient level of security, it is necessary to protect platform
components from unauthorized internal or external access attempts. For this reason,
additional parameters must be taken into account; for instance, the components’
previous behaviour, the origin and time of an access request, or the current state and
environment of the platform. Such information is usually termed as context [10].
Contextual information can be of various types and originate from diverse sources.

The Metadata Schema introduced in [1], provides a classification of these information
types, in its Context-aware Security model (e.g. permission types, physical or network
location of an incoming request, time-related patterns based on normal access
requests, etc.). This classification can act as a common vocabulary for collecting and
leveraging information for authorization purposes.

The second objective relates to the enforcement of policies and limitations
regarding the deployment of cloud applications and their data across various cloud
providers. By design, a decision-making component in Upperware is responsible for
producing correct deployment plans conforming to any given constraints and
limitations. However, a compromised component, due to a cyber-attack, could
possibly yield invalid deployment plans. Therefore, a precautionary validation step,
before the actual deployment, would mitigate the risk of deploying an application in a
non-conformant manner. We refer to this step as pre-authorization. The enforced
limitations can be regulatory (e.g. data not allowed to leave the EU), corporate, as
well as budget-, resource- or security-related. A pre-authorization policy could for
example, pose a limit on the number of virtual machines deployed on a cloud
provider, or require the storage of data of a certain type to be stored in nodes located
only in the EU. These two objectives are quite different in their business purpose and
involve different authorization rules. However, the same authorization capabilities
and toolset can be used in order to achieve both of them.

4 Melodic Authorization Service Approach

In this section the details of the developed authorization service approach are
highlighted. Specifically, we discuss the conceptual architecture of the system and
provide details on how the contextual attributes are managed by this system.

It is important to note that we have adopted the ABAC model for this service,
according also to the analysis provided in section 2. Specifically, based on the
information provided in Table 1, we opted to use WSO2 Balana engine for XACML
3.0 implementation. However, replacing it with another alternative is expected to be a
relatively straightforward task, since the XACML policy engine resides inside the
PDP component of the XACML architecture. Furthermore, the pluggable design of
the server will allow the easy replacement of plugins pertaining to the specific policy
engine with new ones.

4.1 Authorization Service Architecture

Figure 1 depicts the architecture of the developed Authorization Service that enhances
the XACML reference architecture [9]. The server part of the service that receives
and evaluates access requests is enclosed in a dashed box in the same figure. We
consider one PEP embedded within each of the multi-cloud management platform
components that must be protected. This is where incoming access requests to
component resources enter the platform. A PEP intercepts any incoming request,
interrupts the normal request flow, extracts request information and then contacts the
Authorization Server relaying the extracted information. If the server returns a

positive decision, the access request processing flow resumes. Otherwise, the access
is prevented. PEP is provided as an authorization service client library, which is
embedded in the platform components that should be protected. The communication
to PDP is achieved using the REST API exposed by the Authorization Server, over an
encrypted transport layer security (TLS) connection.

These PEPs communicate through an appropriate load balancing to a certain
Authorization Server. Depending on the use case, multiple Authorization Servers can
be used for scaling the access control capabilities that are provided by our system.
Specifically, an Authorization Server comprises a PDP, a Context Handler and several
PIPs. Each PDP constitutes a web service that provides a RESTful API for receiving
access request information from PEP’s, evaluating them against policies and
eventually authorizing or declining the certain access request. For this purpose, PDP
contains a policy evaluation engine, namely the WSO2 Balana. Upon configuration,
PDP will first invoke the Context Handler to collect additional (contextual)
information from the request or the environment, and then evaluates the incoming
request against a number of pre-defined access control policies. Several PDP nodes
may coexist in a cluster to achieve high availability, fault tolerance and fast response
times. Typically, all PDP nodes share the same configuration and the same policy
repository. A second component embedded in the Authorization Server is the Context
Handler. Upon activation, it invokes the configured plugins to collect additional
information (as attributes) about the context of the request. This contextual
information is subsequently stored in a PIP (in order to become available during the
policy evaluation and access control decision. Furthermore, the Context Handler
receives platform or environment-related context from Context Collectors. The PIP is
responsible for providing values for all the involved attributes that participate in the
access control rules and policies, based on which an incoming request is permitted or
denied. Specifically, the PDP’s policy evaluation engine, while processing a request,
might require attribute values not contained in the request itself. In such case, it
invokes PIP plugins to retrieve the required attributes that constitute key-value pairs,
where keys are typically in the form of Uniform Resource Names (URN).

Fig. 1. Authorization Service Conceptual Architecture

The PAP is implemented in order to manage and store the XACML policies. These
policies are stored in a shared place accessible by all PDPs. The architecture is
complemented by a number of Context Collectors (CC), i.e. independent and domain-
specific application components that aim at continuously collecting information about
the multi-cloud management platform and its environment. Thus, the CCs are
essentially mechanisms for collecting contextual information from the environment
and propagate it to the Context Handlers. It is expected that different context
information, and thus context collectors, will be needed in different multi-cloud
deployments based on the application domain. Last, appropriate load balancing
capabilities have been fused into our system. Specifically, the PDP Load-Balancing
stands between PEP clients and the PDP nodes to prevent flooding of one or more of
the Authorization Server instances and allowing the proper scaling of the system. This
is implemented at the PEP-side as a dynamically configured list of PDP endpoints that
are contacted either in successive order (round-robin) or selected randomly. Similarly,
Context Handler load balancing capabilities can be used for enabling CCs to
efficiently communicate with the appropriate CHs. We note that it is also feasible to
add a third-party HTTP proxy or an open source load-balancer (e.g. Traefik9) by
configuring the PEP clients. In either way, incoming access control requests are
dispatched in a balanced way to PDP cluster nodes and the raw context is collected
and handled proportionally by the CHs. We note that any of the incoming requests to
be authorized come from authenticated entities which implies the implementation and
integration of appropriate authentication mechanisms, a work that is out of the scope
of this paper.

Fig. 2. Attribute values flow in the Authorization Service

4.2 Context Attributes in Authorization Service

The attributes handled by the Authorization Service can be of three types; (a) access
request-related attributes (Fig. 2 – Step 1, e.g., requestor id, resource id), (b) request

9 https://traefik.io/

context attributes in the sense that these are not stated in examined access request but
are acquired from other sources (Fig. 2 – Step 2b, e.g., requestor location and device),
and (c) environment/platform-related context attributes, not pertaining to a specific
access request (Fig. 2 – Step 2a, e.g., operational status of a platform component).
The difference in the context in the two latter cases is that the request context
becomes invalid when the request has been processed, whereas environment/platform
context evolves independently of the access requests. Figure 2 provides a high-level
view of the attribute flow in the Authorization Service. Specifically, once the context
is collected (Fig. 2 – Steps 1, 2a, 2b), it becomes available for the PIP (Fig. 2 – Step
3), which upon request provides them in the form of key-value pairs to the PDP for
issuing an access control decision (Fig. 2 – Step 4).

5 Implementing Authorization Service Approach

In this section, we highlight the key components of a platform dedicated for managing
applications deployments on multi-clouds that can be protected by exploiting the
implemented Authorization Service. This kind of protection is enabled by deploying
appropriate PEPs on each of the following platform components. In this way, we
consider a minimal overhead in the implementation of the developed Authorization
Service, since the approach implies that a PEP library is bundled with the application
code (i.e. same Java Archive (JAR) or placed in the Classpath), while a Tomcat
interceptor or “@AuthorizationRequired” annotations on guarded methods are added.

Business Process Management engine (BPM). It coordinates all the decision and
optimization components (i.e. Upperware components in [2]) and executes the
workflow to generate and execute an application deployment plan, according to a set
of user-defined preferences, constraints and optimization goals. When necessary, it
also repeats the whole process or parts of it to introduce deployment plan updates, as
a response to changes in application demands or environment. A PEP client has to be
embedded in BPM engine, in order to protect it from a potentially compromised or
malfunctioning component or from outside-world interactions. In this way each PEP
examines the origin and timeliness of the requests in order to authorize them.

Deployment and Adaptation mechanism. It is responsible for taking an application
deployment plan and executing it by providing specific instructions to components
able to interface with several cloud providers that should be used, for commissioning
VMs and installing application components accordingly. In order to verify that a
given deployment plan conforms to the application deployment policies, a pre-
authorization step is taken. The plan parameters are checked against the relevant
policies, and if rendered as conformant, the deployment starts. For this reason, the
Deployment and Adaptation mechanism uses a PEP client to contact PDP to evaluate
the plan against the posed policies. The plan pre-authorization policies are different
from access authorization policies used for checking the access to previous
components.

Modelling Editors. They are used to firstly create and maintain the Metadata
Schema [1], valuable for providing a formal hierarchical view of the contextual
attributes to be used for modelling the application placement problem. Secondly, it is

used for acquiring, from the DevOps, the appropriate application placement
requirements, constraints and optimization goals that should guide the platform when
undertaking the multi-cloud placement of the given application components. These
editors comprise two layers; the User Interface layer, which executes in user browser,
and the Backend, modelling management layer. The latter also communicates and
interacts with models repository. For this reason, the second layer includes a PEP
client to protect itself from unauthorized access to its functionality and data.

5.1 Use of Request Interceptor for Spring-Boot based components

Most the platform components have been implemented as Spring-Boot web
applications10. This means they embed a minimal application server (e.g. Tomcat11) in
order to accept incoming (HTTP) requests from other platform components, providing
suitable REST APIs. The code implementing the REST API and receiving the
requests needs to be protected with this Authorization Service.

One method for introducing the needed authorization capabilities is by configuring
the embedded Tomcat server (of the Spring-Boot framework) to intercept the
incoming requests and pre-process them before they actually reach the code that
serves them. This is a standard step in the Tomcat HTTP request processing cycle and
is implemented by adding special filters called interceptors. Interceptors can be added
in Tomcat programmatically, during server initialisation. The interception process
of an HTTP request is handled by a Login Interceptor. This interceptor is invoked
three times: (a) Pre-Handle: before calling the code that is meant to service the
request (i.e. MainController), (b) Post-Handle: after the MainController returns and
before rendering the response, and (c) After-Completion: when response has been
sent back to requestor. Regarding Spring-Boot web applications, interceptors can be
added using an application configuration class that implements the
WebMvcConfigurer interface. Therefore, all needed interceptors can be added in the
Tomcat interceptor registry, before the server starts.

This approach does not require any modification of application source code.
Instead, a new configuration class can be written to configure an authorization
interceptor. This class must be packaged with existing code, and Spring-Boot will
take care of using it at runtime. The downside of this method is that it applies only to
Spring-Boot web applications using a Tomcat or Jetty server12.

5.2 Use of Aspect and Aspect-Oriented Programming

A second approach for programmatically exploiting the developed Authorization
Service consists of using the Aspect-Oriented Programming (AOP) paradigm. AOP is
a programming approach for software modularization and separation of cross-cutting
concerns [11]. This is achieved by adding extra functionality (called Advice) to
existing code without significantly modifying the source code (i.e. annotations). This

10 http://spring.io/projects/spring-boot
11 http://tomcat.apache.org/
12 https://www.eclipse.org/jetty/

addition typically occurs during the software building phase in a task called weaving,
which is undertaken by specialised tools called weavers. The code to be modified is
identified via pointcuts, which are specifications of those code artefacts (typically
classes and methods) that need to be enhanced with advices. An advice, along with
the pointcuts that specify the code it must be applied onto, is called an Aspect. We
note that the Before aspects are used to enforce PEP functionality, which means that a
call to a guarded method is intercepted, PEP checks that this call is permitted and then
the actual method execution occurs.

AOP allows the non-core functionality of a software component (e.g. logging of
code executions, measuring duration, and authentication/authorization) to be moved
away from the code implementing the core business of the component. The non-core
functionality is added and interleaved with the core functionality during the software
build phase (via weaving). The Spring framework provides an AOP implementation.
Spring AOP is proxy-based, meaning each code artefact that can be enhanced with
advices will be wrapped by a suitable proxy object that is actually invoked by the
calling code. The proxy can subsequently pass control to the actually requested code.
Proxies are automatically introduced at code-level (during weaving), while source
code remains intact. Thus, this process is transparent to the programmer.

Regarding the use of Aspects in the Authorization Service, an authorization aspect
has been introduced. The corresponding advice (i.e. the wrapping proxy code) will
intercept the code invocation in order to perform a series of authorization related
tasks; namely, (a) create/reuse a PEP client object, (b) collect invocation information
(i.e. method signature and arguments), (c) connect to a PDP server and pass the
collected information, (d) receive the PDP server response (permit, deny, error), and
(e) in case of permit (subsequently), call the actual (wrapped) code or raise an
authorization error, otherwise. When the wrapped code is a method of a Web or
REST controller class, and that method is mapped to a Web or REST endpoint, then
the corresponding (HTTP) request object is introspected to extract all related
information.

6 Conclusions

In terms of this work, a novel authorization service was proposed in the context of
protecting components that undertake the data-intensive application deployments on
multi-clouds. Specifically, this work is seen from two different perspectives; namely,
the “access control” to various platform components and the “pre-authorization” of
application deployment and data placement in cloud providers. In the first case,
authorization capabilities are considered to be responsible for protecting the platform
itself from illegal access attempts and interference with its normal operation. In the
latter case, authorization capabilities refer to the pre-authorization of application
deployment and data placement plans, produced by the decision-making and
optimization components, considering a given set of policies, constraints and goals.

The next steps of this work, involve the appropriate integration with other critical
security services that will address the security challenges in the multi-clouds
deployment domain in a holistic manner. Such additional security mechanisms

involve the use of authentication services, encrypted communication (e.g. SSL/TLS),
mechanisms for counterfeiting the man-in-the-middle attacks, using component
verification and digital certificates among others.

Acknowledgments. The research leading to these results has received funding from
the European Union’s Horizon 2020 research and innovation programme under grant
agreement No. 731664. The authors would like to thank the partners of the
MELODIC project (http://www.melodic.cloud/) for their valuable advices and
comments.

References

1. Verginadis, Y., Patiniotakis, I., Mentzas, G.: Metadata Schema for Data-Aware Multi-
Cloud Computing. IEEE (SMC) INISTA (2018) 1-9

2. Horn, G., Skrzypek, P.: MELODIC: Utility Based Cross Cloud Deployment Optimisation.
In proceedings of the 32nd International Conference on Advanced Information
Networking and Applications Workshops (WAINA), (2018), DOI:
10.1109/WAINA.2018.00112

3. CSA: The Treacherous 12 - Cloud Computing Top Threats in 2016. URL
https://cloudsecurityalliance.org/group/top-threats

4. Verginadis, Y., Michalas, A., Gouvas, P., Schiefer, G., Hübsch, G., Paraskakis, I.:
PaaSword: A holistic data privacy and security by design framework for cloud services.
Journal of Grid Computing, (2017) 1–16, DOI: 10.1007/s10723-017-9394-2

5. Decker, M.: Modelling of location-aware access control rules. In: F. M. Maria Cruz-Cunha
(Ed.), Handbook of Research on Mobility and Computing: Evolving Technologies and
Ubiquitous Impacts, Information Science Reference, Hershey, PA, USA, 2011,
incollection 57, pp. 912–929.

6. Hu, V.C., Ferraiolo, D., Kuhn, R., Friedman, A.R., Lang, A.J., Cogdell, M.M., Schnitzer,
A., Sandlin, K., Miller, R. and Scarfone, K., 2013. Guide to attribute based access control
(ABAC) definition and considerations (draft). NIST special publication, (2013) 800, 162

7. Ferraiolo D., Cugini J., Kuhn D.R.: Role-based access control (RBAC): Features and
motivations. In Proceedings of 11th annual computer security application conference,
(1995) 241-48

8. Ferraiolo, D., Chandramouli, R., Kuhn, R., Hu, V.: Extensible access control markup
language (XACML) and next generation access control (NGAC). In Proceedings of the
ACM International Workshop on Attribute Based Access Control, ACM, (2016) 13-24

9. Garcia-Alfaro, J. and Navarro-Arribas, G.: Prevention of cross-site scripting attacks on
current web applications. In OTM Confederated International Conferences" On the Move
to Meaningful Internet Systems", Springer, (2007) 1770-1784

10. Abowd, G., D., Dey A., K., Brown, P., J., Davies, N., Smith, M., Steggles, P.: Towards a
better understanding of context and context-awareness. In International symposium on
handheld and ubiquitous computing, Springer, (1999) 304-307

11. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., M., Irwin,
J.: Aspect-oriented programming. In European conference on object-oriented
programming, Springer (1997) 220-242

