Conference paper Open Access

Cooperative Arithmetic-Aware Approximation Techniques for Energy-Efficient Multipliers

Leon, Vasileios; Asimakopoulos, Konstantinos; Xydis, Sotirios; Soudris, Dimitrios; Pekmestzi, Kiamal


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="942" ind1=" " ind2=" ">
    <subfield code="a">2020-01-01</subfield>
  </datafield>
  <controlfield tag="005">20200120164914.0</controlfield>
  <controlfield tag="001">3472504</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National Technical University of Athens, Greece</subfield>
    <subfield code="a">Asimakopoulos, Konstantinos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National Technical University of Athens, Greece</subfield>
    <subfield code="a">Xydis, Sotirios</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National Technical University of Athens, Greece</subfield>
    <subfield code="a">Soudris, Dimitrios</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National Technical University of Athens, Greece</subfield>
    <subfield code="a">Pekmestzi, Kiamal</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">225005</subfield>
    <subfield code="z">md5:600061dcbbe96fcc3ffcada2124c1856</subfield>
    <subfield code="u">https://zenodo.org/record/3472504/files/dac-Leon.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-07-01</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3472504</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">National Technical University of Athens, Greece</subfield>
    <subfield code="a">Leon, Vasileios</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Cooperative Arithmetic-Aware Approximation Techniques for Energy-Efficient Multipliers</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">780572</subfield>
    <subfield code="a">Software Development toolKit for Energy optimization and technical Debt elimination</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">801015</subfield>
    <subfield code="a">Enhancing Programmability and boosting Performance Portability for Exascale Computing Systems</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Approximate computing appears as an emerging and promising solution for energy-efficient system designs, exploiting the inherent error-tolerant nature of various applications. In this paper, targeting multiplication circuits, i.e., the energy-hungry counterpart of hardware accelerators, an extensive exploration of the error--energy trade-off, when combining arithmetic-level approximation techniques, is performed for the first time. Arithmetic-aware approximations deliver significant energy reductions, while allowing to control the error values with discipline by setting accordingly a configuration parameter. Inspired from the promising results of prior works with one configuration parameter, we propose 5 hybrid design families for approximate and energy-friendly hardware multipliers, consisting of two independent parameters to tune the approximation levels. Interestingly, the resolution of the state-of-the-art Pareto diagram is improved, giving the flexibility to achieve better energy gains for a specific error constraint imposed by the system. Moreover, we outperform prior works in the field of approximate multipliers by up to 60% energy reduction, and thus, we define the new Pareto front.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1145/3316781.3317793</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
48
13
views
downloads
Views 48
Downloads 13
Data volume 2.9 MB
Unique views 39
Unique downloads 12

Share

Cite as