
Distributed Complex Event Processing in Multiclouds

Vassilis Stefanidis1, Yiannis Verginadis1, Ioannis Patiniotakis1 and Gregoris Mentzas1

1 Institute of Communications and Computer Systems, National Technical University of Ath-

ens, Greece
{stefanidis, jverg, ipatini, gmentzas}@mail.ntua.gr

Abstract. The last few years, the generation of vast amounts of heterogeneous

data with different velocity and veracity and the requirement to process them, has

significantly challenged the computational capacity and efficiency of the modern

infrastructural resources. The propagation of Big Data among different pro-

cessing and storage architectures, has amplified the need for adequate and cost-

efficient infrastructures to host them. An overabundance of cloud service offer-

ings is currently available and is being rapidly adopted by small and medium

enterprises based on its many benefits to traditional computing models. However,

at the same time the Big Data computing requirements pose new research chal-

lenges that question the adoption of single cloud provider resources. Nowadays,

we discuss the emerging data-intensive applications that necessitate the wide

adoption of multicloud deployment models, in order to use all the advantages of

cloud computing. A key tool for managing such multicloud applications and

guarantying their quality of service, even in extreme scenarios of workload fluc-

tuations, are adequate distributed monitoring mechanisms. In this work, we dis-

cuss a distributed complex event processing architecture that follows automati-

cally the big data application deployment in order to efficiently monitor its health

status and detect reconfiguration opportunities. This proposal is examined against

an illustrative scenario and is preliminary evaluated for revealing its performance

results.

Keywords: Distributed CEP, Cloud Monitoring, Multiclouds, Big Data.

1 Introduction

Nowadays, we witness a constant increase of the connected devices and services that

continuously produce data and transmit health status events. The generation of vast

amounts of heterogeneous data and their propagation among different processing and

storage architectures, has amplified the need for adequate and cost-efficient infrastruc-

tures to host them. The recent uptake of Cloud computing adoption could be considered

as a remedy to this situation where the growing needs of the so-called Big-Data appli-

cations, are met by the vastly improving offerings of the cloud providers [1]. Such ap-

plications require to efficiently deal with the volume, variety, velocity, and veracity of

the data, using any resources available in a cost-effective and efficient way. In recent

2

years, Big-Data applications have been developed and used successfully over cloud

infrastructures [2]. Such an adoption of the Cloud computing, theoretically satisfies

unlimited hosting requirements, for storing and processing Big Data, in a reliable, fault-

tolerant and scalable way. Cloud’s ability comprises resources virtualization that re-

quires minimum interaction with cloud service providers and enables users to access

terabytes of storage, high processing power and high availability in a pay-as-you-go

model [3]. As more enterprises started to trust the Cloud computing paradigm, they

started outsourcing their workload to infrastructures, offered by single cloud providers.

This led to vendor lock-in situations that didn’t allow the use of the most optimal infra-

structure (with respect to the processing location, efficiency, cost etc.) per each case

and at each given time. Thus, the recent availability of a variety of public IaaS providers

(e.g. Amazon, Google, HP, IBM, RackSpace) as well as private offerings (e.g. Open-

stack, VMware), still remains un-exploitable by the average cloud user [4;5;6;7;8;9].

In the majority of cloud applications, the cloud users seek to commit their entire pro-

cessing stack over a single cloud provider, by considering only the planned or expected

behaviour of the application. As a result, they neglect to consider flexible infrastruc-

tures able to mix and match platforms from multiple cloud providers, and meet, in such

way, the dynamically changing requirements of their Big Data applications [10]. In

other words, these users miss exploiting the benefits of the multicloud architectures.

Nevertheless, the use of multicloud offerings especially at the level of infrastructure

in order to cope with the needs of big data applications still involves several challenges

and open research questions. These mainly correspond to how data-intensive compu-

ting can be hosted in highly distributed and federated cloud environments by keeping

the Quality of Service (QoS) guarantees. This generic challenge can be analysed into a

number of fine-grained challenges that refer to scalability, resiliency, and security is-

sues faced by big data and data-intensive applications on distributed platforms. The

purpose of this paper is to address the applications’ scalability and resiliency challenges

when attempting to exploit the benefits of multiclouds. Such benefits become even

more obvious, if the reader considers the new business and scientific needs for distrib-

uted data processing among various locations, for real time processing of data from

various heterogeneous sources. Nevertheless, multicloud computing environments con-

sist of many resources that are simultaneously accessed by several tenants, which

means that often suffer from unanticipated behaviour such as performance degradations

either for the infrastructure or the software parts, component failures and security

threats. For these reasons, it is very important to constantly monitor and analyse mul-

ticlouds to detect situations that should lead to reconfigurations of the used processing

topology (e.g. scale up or scale down according to the current workload). In a way,

monitoring delivers the knowledge that is required to make appropriate decisions with

respect to the way applications are deployed and hosted over multiclouds, thus answers

the challenges mentioned above.

Monitoring and analysing Clouds correspond to challenging tasks that require so-

phisticated tools and methods. Event processing is a method of tracking and analysing

streams of data about application-related occurrences that happen (i.e. events), and is-

suing some alerts based on them. Complex event processing (CEP), corresponds to

event processing that combines data for inferring patterns of events that may suggest

3

more complicated circumstances [11]. CEP systems [12] are valuable in digesting and

processing a multitude of event streams. Their big advantage is the ability to collect

information from various heterogeneous data sources and filter, aggregate or combine

them over defined periods of time (i.e. time windows). The idea of using CEP for mon-

itoring cloud applications has been applied with respect to two types of architectural

approaches: centralized and distributed. The centralized CEP architecture is based on a

single CEP engine which processes all monitored data and detects patterns by using

rules. On the other hand, the distributed CEP architecture consists of a set of cooperat-

ing CEP engines that exchange messages and are able to more efficiently detect event

patterns by considering rules that differ according to the proximity of the processing

engine to the event source. In existing centralised CEP approaches [13], [14], huge

bandwidth and computational capabilities are required and usually they lack robustness

and scalability because of the single point of failure when processing vast amounts of

health status data. On the other hand, the distributed CEP architectures such as the

parallel CEP processing architecture of Hirzel’s [15], the work of Ku et al. [16] and

that of Mdhaffar et al. [17], present better performance in terms of data processing

throughput, due to workload sharing across multiple CEP engine, and establish better

scalability results without any risk of single point of failure. Nevertheless, all these

cases are bound to the use of a single cloud vendor, a fact that limits, by default, the big

data-intensive applications capacities.

In this paper, a distributed CEP system is presented, appropriate for applications

deployed over multicloud resources, proposing a multi-level event processing architec-

ture. The paper is organized as follows: Section 2 describes the related work, while in

section 3, the proposed conceptual architecture is discussed along with the relevant

technological grounding details. In section 4, an illustrative example is presented for

better demonstrating the benefits of the proposed approach. In section 5, a preliminary

evaluation of the proposed system is given and in Section 6, we conclude by discussing

the next steps of this work.

2 Related Work

CEP plays a very important role in detecting and integrating events by pattern matching

and using rules in issuing alerts, in cases where increasing amounts of data streams are

present. Concerning the distribution of CEP, few recent works focus on the technique

of parallelization of pattern-matching processing in which pattern matching is seen as

a stateful operator in a general purpose streaming system.

More specifically, Hirzel [15] by using the keys to partition the incoming events,

proposes a pattern matching syntax and a way of translation based on the concept of

partitions. Therefore, events with different keys can be processed in parallel. Hirzel

exploits the partitioning constructs provided by the queries of the specific language he

uses. However, this approach is sufficient only when queries of a language contain such

constructs which is not always the case. The parallelism technique that the authors use,

is either centralized in one machine or distributed in various machines from a single

cloud vendor. Their distributed architecture approach present some issues with respect

4

to a vulnerability of parallelization overhead and noise. Moreover, the distributed par-

allelism CEP approach misses the multicloud benefits.

 In a similar work, Ku et al [16] propose a distributed CEP architecture which splits

various centralized Complex Event Processing tasks load across multiple stations. The

core of communication architecture is achieved by using a distributed message broker

based on Apache River, a network of distributed systems in the form of modular co-

operating services. The authors use a distributed complex event detection algorithm

with a Masters/Workers pattern. The innovation of this proposal can be found in geo-

graphical distribution of tasks of sub-detection using CEP engines in a Master/Slave

flowchart concept. However, this technique presents an important communication over-

head when the number of events to be processed is lesser than 500. Another issue is the

focus on one cloud vendor without considering cross-cloud level deployments. Moreo-

ver, the case of scaling in or scaling out the cluster of deployed CEP engines is not

supported and a static architecture of a pre-considered number of deployed CEP engines

is used.

Paraiso et al [18] present a distributed CEP engine (DiCEPE) which is a platform

that focuses on the integration of CEP engines in critical-case distributed systems. Ap-

propriate communication protocols are used in order to integrate CEP engines easily

and interconnect them across vast geographical areas. Despite the communication het-

erogeneity, adaptability and scalability of the proposed architecture, the introduction of

Frascati [32] open source platform layer, induces overhead due to many messages ex-

changed. Moreover, the deployment of the DiCEPE on multiple cloud environments

using various levels (i.e. 3-level : VM level, Cloud level, Cross-Cloud level) is still a

challenge and is not solved in this effort.

Schultz-Moller et al [19] propose a distributed approach for event detection, called

Next CEP, which uses a new high-level event query language for expressing event pat-

terns. The approach involves the use of the same rules in all CEP engines used in the

architecture without the option to provide dynamic rule adaptation. In our proposed

architecture, a domain specific rule (for each CEP instance) can be changed and de-

ployed at runtime as well as adapted according the monitoring needs.

Mdhaffar et al [17] introduces a dynamic architecture for measuring cloud perfor-

mance and analysing various situations based on a complex event processing either in

a centralized or a distributed architecture. The specific paper demonstrates a system

that is designed to dynamically switch between different centralized and distributed

CEP engines, depending on the current machine load and network traffic conditions.

However, in this dynamic CEP system, no event processing takes place locally to each

Virtual Machine concerning aggregation functions or processing query rules. The local

processing is limited to outliers and anomaly detection. In our approach, local aggrega-

tion function operations take place and the aggregated data results are published to

higher levels of CEP processing nodes. Moreover our approach does not face any la-

tency or delay set up issues, originated from the need to switch between various archi-

tectures.

One additional approach for a centralized Complex Event Architecture which com-

bines technologies such as Mule ESB and ESPER engine was presented by Boubeta et

al [13], by using the Xively IoT platform. Data is gathered from various sources for

5

Home Automation operations. Nevertheless, this approach is centralized, this neglect-

ing the benefits of multicloud environments and does not use any dynamic communi-

cation protocol suitable for event-driven architectures that dynamically may change

their number of hosts. Leitner et al [14] propose an event-based approach for monitor-

ing cloud applications by using a multi-step CEP-based event correlation schema which

can be used for cloud applications with a large number of virtual resources. By that

way, the application elasticity is increased. CloudScale [33] framework uses the moni-

toring data to dynamically acquire and release cloud hosts. Nevertheless, the specific

approach does not investigate the co-existence of low-level metrics such as CPU utili-

zation, memory consumption etc. along with the application specific metrics i.e. re-

sponsiveness of a very critical application that controls i.e. a nuclear factory. Moreover,

there is a small evaluation of the specific architecture while the case of deploying ap-

plications in various cloud environments is not considered at all.

Finally, Flouris et al [20] present FERRARI which is a prototype that implements

real-time CEP for large volume event data streams over distributed architectures by

sharing the load over a set of streaming cloud platforms. In addition, intra-cloud CEP

is used where appropriate. Nevertheless, this approach does not give any dynamic pub-

lish/subscribe model for communicating among various CEP engines but it uses

push/pull techniques. Moreover, it does use only one CEP engine in each Cloud envi-

ronment with partitioning (parallelism) in contrast to our architecture that uses many

CEP engines in each Cloud operator. In addition, an Event Processing Network (EPN)

is automatically deployed and configured with the assistance of a dedicated Event Pro-

cessing Management Component. In the case of Flourish et al. work [20] a web-based

authoring tool is used for manually building the EPN and performing the query optimi-

zation across the Cloud environments.

3 Distributed Complex Event Processing (DCEP) Architecture

3.1 Conceptual Architecture

In this section, we discuss our approach for a novel Event Processing Network (EPN)

that can be efficiently distributed over several virtualized resources that may span mul-

tiple providers to monitor the deployment of multicloud applications. Such advanced

monitoring capabilities are valuable for detecting reconfiguration opportunities that

will safeguard the desired quality of service of the multicloud applications. An EPN is

a conceptual model that refers to a set of Event Processing Agents (EPA) , Event Pro-

ducers and Event Consumers all connected by a set of Event Channels(EC) [21]. The

event producers are resources that generate events while the event consumers are com-

ponents that receive such events. In multiclouds, the event producers involve VMs that

host parts of a multicloud application and transmit monitoring events with respect to

the health status of the hosting resource and any application specific information. The

EPAs act both as event consumers (subscribe for monitoring events) and as event pro-

ducers since they are able to relay any detected complex event patterns to other parts of

the EPN. Each EPA filters, match and derivate complex events according to specific

6

rules, expressing patterns that reveal the multicloud application health status. In our

approach, we consider the implementation of these EPAs by using interconnected Com-

plex Event Processing (CEP) engines. The goal of CEP technique is to identify events

and patterns with great importance such as opportunities or threats for the current mul-

ticlouds processing topology and respond to them as quickly as possible. The use of

multiple EPAs in a distributed architecture brings about the advantage of multi-level

complex event processing. Specifically, three distinct layers of CEP are considered (as

seen in Fig. 1) for hierarchically detecting interesting complex events (e.g. average

CPU>80% for an application server instance, average CPU>80% for all application

server instances on Cloud X and average CPU>80% for all application server instances

on all Clouds used for a certain multicloud application). Each of these EPAs are inte-

grated with an appropriate pub/sub system for message queueing and event propagation

across the three event processing layers, constituting the DCEP agents.

Fig. 1. Conceptual Architecture of a DCEP for Monitoring Multicloud Applications

As depicted in Fig.1, this network of DCEP agents is structured across three main

layers: i) the VM instance layer (1st Level Event Patterns Detection), ii) the Cloud layer

(2nd Level Event Patterns Detection) and iii) the Global layer (3rd Level Event Patterns

Detection). The first one corresponds to the installation and configuration of Event Pro-

cessing Agents on each VM instance in order to focus on the aggregation, filtering and

propagation of raw health status events. The second layer involves the use of one such

agent per Cloud for extracting higher-level information on the placed data and cloud

application. This allows for a valuable consolidated view of all the resources’ and ap-

plications’ statuses deployed per cloud provider based on the aggregation and pro-

cessing of the output of “local” DCEP Agents that report from each VM. Consequently,

the third layer involves the output aggregation of the “second level” Agents in order to

allow for a global overview of the status of the whole processing topology.

7

Moreover, in a dynamic environment where the multicloud resources to be used for

hosting an application are not static and predefined, a dedicated mechanism for setting

up and maintaining the described EPN according to the requirements of the DevOps or

the application developers, is a necessity. Thus, we introduce the so-called Event Pro-

cessing Management (EPM) server and its EPM Clients which are responsible for re-

sponsible for the deployment, synchronization and orchestration of the DCEP Agents,

hosted in various VMs and heterogeneous Cloud providers. Upon successful deploy-

ment of these agents, the Event Processing Management also undertakes the configu-

ration or enhancement of all the appropriate complex event pattern rules that should be

used by each EPA.

3.2 Deploying and Managing DCEP Agents over Multiclouds

The EPM subsystem is responsible for deploying and managing the monitoring network

of Event Processing Agents, and it uses a client-server architecture which comprises

two distinct architectural components types:

i. The EPM clients, which are the DCEP controlling agents. They accompany the

DCEP agents at each VM, on the first, second or third level of event pattern

detection. They do not undertake monitoring tasks (in contrast to EPAs) but

they are separate modules. These Clients contain configuration scripts for set-

ting up and launching first level or second level DCEPs according to the instruc-

tions of the server (i.e. Event Processing Manager). They also contain infor-

mation and credentials for connecting to server. EPM Clients are installed in a

VM during VM initialization. An alternative approach would be that the server

connects to each VM and install clients after VM initialization. This approach

requires that each VM offer an interactive SSH shell and the VM network ad-

dress and administrator credentials are available to server.

ii. The server (i.e. Event Processing Manager) is the controller of clients. It is a

part of the EPM subsystem and resides at the third level of the DCEP architec-

ture (see Fig.1). The server is responsible for installing clients to VMs (if they

are not installed during VM initialization) and afterwards for instructing them

to configure the respective DCEP Agents as first or second level event patterns

detection. Moreover the server periodically checks whether clients and VMs are

active and if one goes offline (e.g. if it crashes) it can reconfigure the EPN ap-

propriately.

It is noteworthy to mention that before the multicloud application should start its

operation the EPN must be in place and ready to capture and process monitoring events.

Therefore, upon each VM boot, the installed EPM client attempts to connect to EPM

server using SSH protocol. If it succeeds it sends VM identification information and

the server assigns it a unique Id (which is stored for future sessions). The server will

decide (using a specific strategy) which VMs will act as first level EPAs and which as

second (or first and second level simultaneously). Subsequently the server signals cli-

ents about its decision, passing any needed information, and clients execute preconfig-

ured setup scripts that prepare and launch the DCEP Agents. The EPM Client monitors

the DCEP Agent launching and when it is ready the client updates the server. When the

8

EPN is in place and operational, the server signals that the multicloud application may

be deployed and start operating.

It is also important to mention that second level DCEP Agents are configured and

launched before the first level DCEP Agents, since their network information must be

passed to the subordinate first level DCEP Agents. First level DCEP Agents are con-

figured and launched afterwards and forward their events to the designated second level

DCEP Agent, resulting in a hierarchical network structure. Second level DCEP Agents

are also configured to forward their events to the third level where EPM resides. The

process of bootstrapping the EPN is depicted in Fig.2.

Fig. 2. Multi-Cloud DCEP Application Bootstrap

3.3 DCEP Implementation

In this section, we ground the conceptual architecture presented in section 3.1 and

discuss the technologies used for each of the components of the proposed DCEP sys-

tem. Based on the presented architecture, two basic functionalities should be supported.

The first is related to the queueing and propagation (to subscribers) of monitoring

events coming from multicloud resources, while the second corresponds to the complex

event processing of these events. For the first functionality, the use of an Enterprise

Service Bus (ESB) is in order while for the second basic functionality several instances

of CEP engines have been adopted. The event producers perceived in this approach,

refer to: i) virtualized resources-related sensors that capture information related to in-

frastructural performance issues (e.g. VMs’ RAM usage, CPU load etc.); application-

related sensors which propagate the multicloud application’s performance (e.g. Re-

sponse Time) and iii) the complex events produced by EPAs based on the previous two

types of events. The data obtained from these event producers are published through

the use of an ESB. An ESB instance is used in each VM employed for hosting the

components of the multicloud application (e.g. DBs, application servers etc.). In paral-

lel, a CEP engine instance is also installed per each VM used. This CEP engine uses

event patterns (rules) that specify the conditions under which reconfiguration events

are produced or specific aggregated events are propagated to a higher processing level.

In this work we have used and configured the MuleSoft open source software [22]

for the implementation of ESB functionalities. MuleSoft ESB was evaluated by the

Rademakers and Dirksen [23] as the best-of-breed products currently available accord-

ing to the following criteria: ESB core functionality, quality of documentation, market

9

visibility, active development and support community, custom logic, transport proto-

cols and connectivity options, integration capabilities with open source frameworks,

and tool support. Due to the need for dynamic and adaptive deployments of various

Virtual Machines among various Cloud environments, it is obvious that a flexible type

of messaging protocol should be used to transfer the raw data coming from the data

sources (hardware and software sensors) to the EPAs. Therefore, we have adopted the

Advanced Message Queueing Protocol (AMQP) protocol to propagate monitoring

events over the MulSoft ESB, according to the Publish/Subscribe paradigm. Apache

ActiveMQ [27] is one of the most popular and powerful open source messaging and

Integration Patterns server. It is an open source message broker written in Java together

with a full Java Message Service (JMS) client. Many features that it provides, fits our

Cross-Cloud distributed CEP Architecture:

• ActiveMQ is standards-based in that it is a JMS 1.1 compliant. The JMS spec-

ification provides many benefits and guarantees including asynchronous mes-

sage delivery, message durability for subscribers which are very crucial for

the dynamic cross-cloud scaling architecture;

• ActiveMQ provides a wide range of connectivity options including support for

protocols such as HTTP/S, multicast, TCP, SSL, and others. This gives a sub-

stantial flexibility for the implementation of communication among publishers

and subscribers;

• Due to the proposed distributed architecture, the use of tightly coupled archi-

tectures for message brokering can be problematic. Loosely coupled architec-

tures exhibit fewer dependencies which are very useful in a dynamically

changing (by scaling in or out) event-driven architecture [27].

Fig. 3. Communication Details between ESB and EPAs

Moreover, ESPER [26] was used for the CEP capabilities required for this approach.

ESPER is an open source engine that combines Event Stream Processing (ESP) and

10

CEP capabilities. ESPER uses the Event Processing Language (EPL) and provides a

highly scalable, memory-efficient data stream processing tool to detect event patterns

and create alerts. EPL is used to express filtering, aggregation joins, and define patterns

over multiple events streams. In Figure 3, we provide a UML component diagram that

conceptually depicts the detailed subcomponents of the proposed architecture per each

layer and EPA. We note that grey color was used to denote newly developed subcom-

ponents that augment the MuleSoft and Esper subcomponents that are offered as open-

source software. The subcomponents include the:

• Type of Events Configurator - This is a subcomponent that provides to the

ESPER engine the information about the type of events that the engine should

process;

• Complex Event Processing Rules Configurator - This subcomponent injects to

the ESPER engine the appropriate event patterns expressed in EPL for detect-

ing complex event patterns at run-time.

• ESPER Engine - This corresponds to the core ESPER component re-used and

spawned in multiple instances over the proposed distributed architecture for

detecting complex event patterns;

• Dynamic Configurator of publishers & subscribers - This subcomponent can

register any consumer to needs to subscribe to events according to a specific

event topic that is defined via the JMS API of Active MQ service;

• JMS API Connector - This subcomponent is used as a software entity that

propagates events to other subscribers hosted in several VMs;

• Monitoring GUI Active MQ - This subcomponent is used as a monitoring tool

where valuable information is presented through a user interface concerning

the way that various events are forwarded according to pub/sub model through

the Active MQ broker;

• Active MQ Connector & Broker - This subcomponent is an open source mes-

sage broker written in JAVA providing an efficient Java Message Service;

• Event Processing Manager - This subcomponent, as described in the previous

section, is responsible for the synchronization and orchestration of the deploy-

ment and reconfiguration of EPAs and ESB instances to be hosted in all the

VMs that will accommodate aspects of a big data-intensive application.

4 An illustrative example

To illustrate the details of this approach, we use the case of a Vehicular Simulation

Traffic processing application, which is a big data application due to its dynamic and

demanding nature, requires deployment over a multi-cloud environment, thus continu-

ous and efficient monitoring for optimisation purposes. In this example, the traffic sys-

tem includes many heterogeneous agents (e.g., people, cars, public transport, and traffic

signals) and depends on several factors (e.g., weather, mass events, road works etc.).

Therefore, it involves big data-intensive scenarios, where the capability to detect mul-

tiple complex events, is a necessity to recognise and react on situations that may jeop-

ardise the health of the deployment topology and eventually the quality of service of

11

the target application. This involves the real-time analysis of huge amount of data com-

ing from various sources that represented application fragments that undertake data in-

tensive traffic simulations. To be more specific, our proposed framework can be used

to run simulations with different input settings (e.g. traffic control settings) and produce

output, such as congestion, travel times, average speeds and total waiting times. So, it

may be used to evaluate a large number of traffic control settings, e.g. traffic signal

settings or make decisions on the construction of new roads, bridges etc.

In this illustrative example, the complex event patterns deployed, use raw monitor-

ing events coming from the traffic simulating sensors (i.e. RawExecutionTime, Simu-

lationLeftNumber, RemainingSimulationTimeMetric and TotalCores events). The

complex events patterns required for monitoring the application and making reconfig-

uration decision based on its current status, involve complex function such as the per-

centile and the floor functions which use specific time windows and specific output

rates. Specifically, the following complex event processing rules have been used:

• MinimumCores event expressed as: Ceil(SimulationLeftNumber /floor(Re-

mainingSimulationTimeMetric / ETPercentile))

• SimulationNotFinishOnTime scaling event expressed as: (ceil(Simula-

tionLeftNumber /TotalCores) * ETPercentile) - RemainingSimulatioTim-

eMetric

5 Evaluation

The testbed used for this Vehicle Traffic scenario, include 2 VMs in a private cloud

infrastructure (using Openstack) and a windows 10 PC. Each of the VMs has 64-bit

CPUs with 20 GB of disk and 3.8 GB of RAM and come with Ubuntu 16 as the oper-

ating system. The following components were used for this evaluation: 1) an events

generator that is able to publish events in a configurable rate; 2) the DCEP Agent and

3) the monitoring evaluation tool. The event generator is placed on the VM hosted in

windows machine and corresponds to a specific Mule Application developed based on

the Quartz1 module which supports the scheduling of programmatic events.

For this evaluation scenario we measured the RAM and CPU usage on the machines

that hosted the DCEP agents for a number of incoming event rates. Specifically, we

used 500 events/sec and 1000 events/sec over a period of 5 minutes, corresponding to

the RawExecutionTime events of the Vehicle Simulation Traffic scenario. The other

events i.e. SimulationLeftNumber, RemainingSimulationTimeMetric and TotalCores

that come from Simulation Manager (the big data- intensive application) do have

smaller rates i.e. 100 events/sec etc. The results for the CPU and RAM usage are de-

picted in Figure 4.

Based on these results, we notice that our DCEP approach presents a stable memory

consumption of around 30 percent, without any major fluctuations, while the CPU us-

age doesn’t exceed the 36 percent. The latter seem even more improved as the number

1 https://docs.mulesoft.com/mule-user-guide/v/3.6/quartz-connector

https://docs.mulesoft.com/mule-user-guide/v/3.6/quartz-connector

12

of events per second increase, a fact that denotes good queuing capabilities. An im-

portant advantage of this implementation of the proposed DCEP system is the appro-

priate use of complex event processing technologies that allow for the transparent joins

of two or more streams and the use of complex mathematical formulas that may result

in highly complex event patterns rules. In the Traffic Vehicle scenario several events

of various topics were considered and joined in order to detect and emit a final scaling

event called SimulationNotFinishOnTime. This was possible through the utilization of

user defined functions on the definition of patterns and calculation of complex formulas

(e.g. percentile function).

 Fig. 4. Evaluation Results

6 Conclusions

In this paper, we presented a three level distributed architecture for monitoring big data

intensive applications deployed over multicloud resources. The conceptual architec-

tural design was discussed along with the implementation details and technological de-

cisions. Furthermore, we used an illustrative scenario in order to present and evaluate

the main benefits of this approach. The preliminary evaluation revealed adequate pro-

cessing and memory consumptions levels that will be further compared, in the future,

against other prominent complex event processing solutions. In addition, this work will

continue in terms of integrating such an approach with a holistic platform that will be

able to manage the complete lifecycle of multicloud applications and their processed

data. The role of this solution will be to adequately monitor the health status of the

application, in order to maintain a constantly optimised deployment of all the applica-

tion components, over heterogeneous VMs that span the boundaries of several cloud

providers.

13

Acknowledgements

The research leading to these results has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant agreement No. 731664.

The authors would like to thank the partners of the MELODIC project (http://www.me-

lodic.cloud/) for their valuable advices and comments.

References

1. Zanoon, N., Al-Haj, A., Khwaldeh, S.: Cloud Computing and Big Data is there a Relation between

the Two: A Study. International Journal of Applied Engineering Research 12(17) , pp.6970-6982

(2017).

2. Hashema, I.,Yaqoob,I.,Anuar,N.,Gani, A., Khan,S.: The rise of “big data” on cloud computing:

Review and open research issues. Journal of Information Systems 47 , pp. 98-115(2015).

3. Martinez, G., Bote, M., Gómez-Sánchez, E., Cano-Parra, R.: Cloud computing and education.

Journal Computers & Education 80 (C), pp.132-151 (2015).

4. Amazon Web Services Homepage, https://aws.amazon.com/

5. Hewllet Packard Homepage, https://www.hpe.com/emea_europe/en/solutions/cloud.html

6. IBM Cloud Solutions Homepage, https://www.ibm.com/cloud/

7. Rackspace Homepage, https://www.rackspace.com/

8. Openstack Homepage, https://www.openstack.org/

9. VMware Homepage, https://cloud.vmware.com/

10. TheMultiCloudFuture:ChallengesandBenefitsHomep-

age,https://technodrone.blogspot.com/2014/03/the-multi-cloud-future-challenges-and.html

11. CEP definition in Wikipedia, https://en.wikipedia.org/wiki/Complex_event_processing

12. Cugola, G., Margara, Al.: Processing Flows of Information: From Data stream to complex event

processing. Journal of ACM Computing Surveys (CSUR) 44 (Issue 3 –article 15), 15:1-15:62

(2012).

13. Boubeta-Puig, J., Ortiz, G., & Medina-Bulo, I.: Approaching the Internet of Things through Inte-

grating SOA and Complex Event Processing. In Z. Sun, & J. Yearwood (Eds.), Handbook of Re-

search on Demand-Driven Web Services: Theory, Technologies, and Applications (pp. 304-323).

Hershey, PA: IGI Global. doi:10.4018/978-1-4666-5884-4.ch014, (2014).

14. Leitner,P., Inzinger, C., Hummer, W., Satzger, B., Dustdar, S.: Application-Level Performance

Monitoring of Cloud Services Based on Complex Event Processing Paradigm. In: 5th IEEE Inter-

national Conference on Service-Oriented Computing and Applications (SOCA) (2012).

15. Hirzel, M.: Partition and Compose: Parallel Complex Event Processing. In: DEBS '12- Proceed-

ings of the 6th ACM International Conference on Distributed Event-Based Systems, pp. 191-

200,ACM, Berlin, Germany (2012).

16. Ku,T., Long-Zhu, Y., Yuan-Hu, K.: A Novel Distributed Complex Event Processing for RFID

Application. In: 2008 Third International Conference on Convergence and Hybrid Information

Technology , Busan, South Korea (2008).

17. Mdhaffar, A., Halima, R., Jmaiel, M., Freisleben, B.: A Dynamic Complex Event Processing Ar-

chitecture for Cloud Monitoring and Analysis. In: 2013 IEEE 5th International Conference on

Cloud Computing Technology and Science, Bristol, UK (2013).

18. Fawaz, P., Hermosillo, G., Rouvoy, R., Seinturier, L.: A Middleware Platform to Federate Com-

plex Event Processing. In: 2012 IEEE 16th International Enterprise Distributed Object Computing

Conference (EDOC), pp. 113-122, Beijing, China (2012).

https://www.sciencedirect.com/science/journal/03064379
https://aws.amazon.com/
https://www.hpe.com/emea_europe/en/solutions/cloud.html
https://www.ibm.com/cloud/
https://www.rackspace.com/
https://www.openstack.org/
https://cloud.vmware.com/
https://technodrone.blogspot.com/2014/03/the-multi-cloud-future-challenges-and.html
https://technodrone.blogspot.com/2014/03/the-multi-cloud-future-challenges-and.html
https://en.wikipedia.org/wiki/Complex_event_processing

14

19. Schultz-Møller, N., Migliavacca, M., Pietzuch, P.: Distributed Complex Event Processing with

Query Rewriting. In: Proceedings of the Third ACM International Conference on Distributed

Event-Based Systems, DEBS 2009, Nashville, Tennessee, USA (2009).

20. Flouris, I., Manikaki, V., Giatrakos, N., Deligiannakis, A., Garofalakis, M., Mock, M., Bothe, S.,

Skarbovsky, I., Fournier, F., Štajcer, M., Križan, T., Yom-Tov, J., Volarević, M.: FERARI: A

Prototype for Complex Event Processing over Streaming Multi-cloud Platforms. In: DEBS '16

Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems.

pp. 348-349. Irvine, CA, USA (2016).

21. Etzion, O., Niblett, P.: Event Processing in Action. 1st edn. Manning Publications Co. Greenwich,

CT, USA (2010).

22. Mule Soft Homepage, www.mulesoft.com

23. Rademakers, T., Dirksentt, J.: Open-source ESBs in action.1st edn. Greenwich, CT: Manning,

(2009).

24. Case of Bank de Luxemburg from Mulesoft Homepage, https://www.mulesoft.com/case-stud-

ies/esb/banque-de-luxembourg

25. Case of Siemens from Mulesoft Homepage, https://www.mulesoft.com/case-studies/api/siemens

26. Esper CEP engine Homepage, http://www.espertech.com/esper/

27. Apache Active MQ Homepage, http://activemq.apache.org/

28. Wahl, A., Hollunder, B.: Automated Performance Measurement for CEP Systems. In: Forth In-

ternational Conferences on Advanced Service Computing (Service Computation 2012). IARIA

2012, pp.116-121, Nice, France (2012).

29. Cao, K., Wang,Y., Wang, F.: Context-aware Distributed Complex Event Processing Method for

Event Cloud in Internet of Things. Journal of Advances in information Sciences and Service Sci-

ences(AISS) 5(8), 121-122 (2013).

30. Xiao, F., Zhan, C., Lai, H., Tao, L., Zhiguo, Q.: New parallel processing strategies in complex

event processing systems with data streams. International Journal of Distributed Sensor Networks

13(8), (2017).

31. Dayarathna, M., Perera, S.: Recent Advancements in Event Processing. Journal of ACM Compu-

ting Surveys 51(2), 1-36 (2018).

32. Seinturier,L., Merle,P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J-B.: A Component-

Based Middleware Platform for Reconfigurable Service-Oriented Architectures. Journal of Soft-

ware: Practice and Experience (SPE) 42(5), 559-583 (2012).

33. Leitner, P.,Hummer, W., Satzger, B., Inzinger, C., Dustdar, S.: CloudScale- a Novel Middleware

for Building Transparently Scaling Cloud Applications. In: Proceedings of the 27th Annual ACM

Symposium on Applied Computing, pp. 434-440. ACM, Trento, Italy (2012).

34. Siddhi WSO2 Homepage, https://docs.wso2.com/dis-

play/CEP400/SiddhiQL+Guide+3.0#SiddhiQLGuide3.0-Joins

http://www.mulesoft.com/
https://www.mulesoft.com/case-studies/esb/banque-de-luxembourg
https://www.mulesoft.com/case-studies/esb/banque-de-luxembourg
https://www.mulesoft.com/case-studies/esb/banque-de-luxembourg
https://www.mulesoft.com/case-studies/esb/banque-de-luxembourg
https://www.mulesoft.com/case-studies/api/siemens
http://www.espertech.com/esper/
http://activemq.apache.org/
https://docs.wso2.com/display/CEP400/SiddhiQL+Guide+3.0#SiddhiQLGuide3.0-Joins
https://docs.wso2.com/display/CEP400/SiddhiQL+Guide+3.0#SiddhiQLGuide3.0-Joins
https://docs.wso2.com/display/CEP400/SiddhiQL+Guide+3.0#SiddhiQLGuide3.0-Joins
https://docs.wso2.com/display/CEP400/SiddhiQL+Guide+3.0#SiddhiQLGuide3.0-Joins

