Presentation Open Access

Multi-Model Bayesian Kriging for Urban Traffic State Prediction

Offor, Kennedy John; Wang, Peng; Mihaylova, Lyudmila S


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">particle filter, traffic prediction, Kriging, Bayesian inference, Gaussian Process</subfield>
  </datafield>
  <controlfield tag="005">20200120164930.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Funder: Tertiary Education Trust Fund (TETFund), Nigeria</subfield>
  </datafield>
  <controlfield tag="001">3470240</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">15-17 October 2019</subfield>
    <subfield code="g">SDF Symposium</subfield>
    <subfield code="a">13th Sensor Data Fusion Symposium: Trends, Solutions, and Applications</subfield>
    <subfield code="c">Bonn, Germany</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Sheffield</subfield>
    <subfield code="a">Wang, Peng</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Sheffield</subfield>
    <subfield code="0">(orcid)0000-0001-5856-2223</subfield>
    <subfield code="a">Mihaylova, Lyudmila S</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">948453</subfield>
    <subfield code="z">md5:2ff2dfd0b5580e13f63f0cfee6832675</subfield>
    <subfield code="u">https://zenodo.org/record/3470240/files/Multi-Model Bayesian Kriging for Urban Traffic State Prediction.pptx</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://www.fkie.fraunhofer.de/de/Veranstaltungen/sdf2019.html</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-10-02</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-tetfund</subfield>
    <subfield code="o">oai:zenodo.org:3470240</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Sheffield</subfield>
    <subfield code="0">(orcid)0000-0001-9112-070X</subfield>
    <subfield code="a">Offor, Kennedy John</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Multi-Model Bayesian Kriging for Urban Traffic State Prediction</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tetfund</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">688082</subfield>
    <subfield code="a">SETA: An open, sustainable, ubiquitous data and service ecosystem for efficient, effective, safe, resilient mobility in metropolitan areas</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In the commonly used Kriging approaches, the covariance function depends only on the separation distance irrespective of the traffic at the considered locations. A key limitation of such an approach is its inability to capture well the traffic dynamics and transitions between different states. This paper proposes a Bayesian Kriging approach for the prediction of urban traffic. The approach can capture these dynamics and model changes via the covariance matrix. The main novelty consists in representing both stationary and nonstationary changes in traffic flows by a discriminative covariance function conditioned on the observation at each location. An advantage of the approach is that it can represent congested regions and interactions in both upstream and downstream areas. Experiment carried out with real data from Santander, Spain shows that RMSE of our method outperforms traditional Kriging method by 8.4%.&lt;br&gt;
&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3470239</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3470240</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">presentation</subfield>
  </datafield>
</record>
85
14
views
downloads
All versions This version
Views 8585
Downloads 1414
Data volume 13.3 MB13.3 MB
Unique views 6868
Unique downloads 1414

Share

Cite as