Poster Open Access

Understanding Chemical Complexity in Protostellar Outflows L1157-B1 Star Forming Region

Kavak, U.; Viannet, T.

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Astrochemistry, L1157, jets and outflows, ISM: molecules</subfield>
  <controlfield tag="005">20200120171727.0</controlfield>
  <controlfield tag="001">3469667</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">31 August - 1 September 2017</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Leiden Observatory, 2333 AC, Leiden, the Netherlands -   INAF Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125, Firenze, Italy</subfield>
    <subfield code="a">Viannet, T.</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2346808</subfield>
    <subfield code="z">md5:16d51bd0a04d642dd93023880b11d610</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u"></subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-10-02</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-astronomy-general</subfield>
    <subfield code="p">user-sron</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Kapteyn Astronomical Institute/SRON Groningen</subfield>
    <subfield code="0">(orcid)0000-0002-7640-4998</subfield>
    <subfield code="a">Kavak, U.</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Understanding Chemical Complexity in Protostellar Outflows L1157-B1 Star Forming Region</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-astronomy-general</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-sron</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;During the early evolutionary stages of star formation, molecular outflows are&amp;nbsp;produced by the shocked gas interaction between high-velocity jets driven by the&amp;nbsp;protostar and the ambient material. Shocks quickly release the content of interstellar ices into the gas phase through ice sputtering and trigger a rich endothermic gas-phase chemistry. Spatially resolved molecular outflows are known to be chemically rich&amp;nbsp;with the detection of several dozens of species and provide us a laboratory to&amp;nbsp;test different chemical scenarios. Complex Organic Molecules (COMs), molecules based on carbon chemistry and probably at the origin of the prebiotic&amp;nbsp;chemistry we see in our Solar System, have been routinely detected around&amp;nbsp;protostars in large quantities. The presence of many COMs has been understood&amp;nbsp;as due to warm surface chemistry triggered by UV photolysis. The recent&amp;nbsp;detection of several COMs towards the protostellar outflow prototype L1157-B1 challenges our&amp;nbsp;current understanding of the chemistry producing these COMs. The large distance of the&amp;nbsp;source with respect to the central heating protostar (about 60 arcsec) suggests that&amp;nbsp;the pre-shock material is too cold to efficiently produce COMs through warm surface chemistry.&amp;nbsp;&lt;/p&gt;

&lt;p&gt;In this project, we theoretically studied the formation and evolution of COMs&amp;nbsp;occurring in molecular outflows. For this purpose, the results of a state-of-the-art 1D&amp;nbsp;physical shock model were applied to a gas-grain astrochemical model&amp;nbsp;in order to assess whether COMs can be produced in molecular outflows through gas-phase&amp;nbsp;chemistry. Then, the results of the model predictions were compared with recent&amp;nbsp;observations carried out with modern sub-millimeter facilities of the prototype outflow L1157-B1.&amp;nbsp;&lt;br&gt;
It is concluded that dimethyl ether (DME) and methyl formate (MF), the two most&amp;nbsp;abundant COMs in star-forming regions can be produced in significant quantities in shock regions.&lt;/p&gt;

&lt;p&gt;The production of these COMs in shocks is mostly due to of neutral-neutral chemistry, triggered&amp;nbsp;by the destruction of methanol through reactions involving atomic H forming the CH$_2$OH and&amp;nbsp;CH$_3$O radicals. Nevertheless, it seems that gas-phase chemistry alone only accounts for a&amp;nbsp;significant but not entire&amp;nbsp;part of the observed DME and MF abundances of a few percent with&amp;nbsp;respect to methanol. Alternative pathways, such as cold surface chemistry, for instance,&amp;nbsp;could also play a role.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3469666</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3469667</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">poster</subfield>
All versions This version
Views 3333
Downloads 2828
Data volume 65.7 MB65.7 MB
Unique views 2828
Unique downloads 2323


Cite as