Poster Open Access

Understanding Chemical Complexity in Protostellar Outflows L1157-B1 Star Forming Region

Kavak, U.; Viannet, T.


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3469667">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3469667</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3469667"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0002-7640-4998">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0002-7640-4998</dct:identifier>
        <foaf:name>Kavak, U.</foaf:name>
        <foaf:givenName>U.</foaf:givenName>
        <foaf:familyName>Kavak</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Kapteyn Astronomical Institute/SRON Groningen</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Viannet, T.</foaf:name>
        <foaf:givenName>T.</foaf:givenName>
        <foaf:familyName>Viannet</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Leiden Observatory, 2333 AC, Leiden, the Netherlands - INAF Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125, Firenze, Italy</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Understanding Chemical Complexity in Protostellar Outflows L1157-B1 Star Forming Region</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued>
    <dcat:keyword>Astrochemistry, L1157, jets and outflows, ISM: molecules</dcat:keyword>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-10-02</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3469667"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3469667</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3469666"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/astronomy-general"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/sron"/>
    <dct:description>&lt;p&gt;During the early evolutionary stages of star formation, molecular outflows are&amp;nbsp;produced by the shocked gas interaction between high-velocity jets driven by the&amp;nbsp;protostar and the ambient material. Shocks quickly release the content of interstellar ices into the gas phase through ice sputtering and trigger a rich endothermic gas-phase chemistry. Spatially resolved molecular outflows are known to be chemically rich&amp;nbsp;with the detection of several dozens of species and provide us a laboratory to&amp;nbsp;test different chemical scenarios. Complex Organic Molecules (COMs), molecules based on carbon chemistry and probably at the origin of the prebiotic&amp;nbsp;chemistry we see in our Solar System, have been routinely detected around&amp;nbsp;protostars in large quantities. The presence of many COMs has been understood&amp;nbsp;as due to warm surface chemistry triggered by UV photolysis. The recent&amp;nbsp;detection of several COMs towards the protostellar outflow prototype L1157-B1 challenges our&amp;nbsp;current understanding of the chemistry producing these COMs. The large distance of the&amp;nbsp;source with respect to the central heating protostar (about 60 arcsec) suggests that&amp;nbsp;the pre-shock material is too cold to efficiently produce COMs through warm surface chemistry.&amp;nbsp;&lt;/p&gt; &lt;p&gt;In this project, we theoretically studied the formation and evolution of COMs&amp;nbsp;occurring in molecular outflows. For this purpose, the results of a state-of-the-art 1D&amp;nbsp;physical shock model were applied to a gas-grain astrochemical model&amp;nbsp;in order to assess whether COMs can be produced in molecular outflows through gas-phase&amp;nbsp;chemistry. Then, the results of the model predictions were compared with recent&amp;nbsp;observations carried out with modern sub-millimeter facilities of the prototype outflow L1157-B1.&amp;nbsp;&lt;br&gt; It is concluded that dimethyl ether (DME) and methyl formate (MF), the two most&amp;nbsp;abundant COMs in star-forming regions can be produced in significant quantities in shock regions.&lt;/p&gt; &lt;p&gt;The production of these COMs in shocks is mostly due to of neutral-neutral chemistry, triggered&amp;nbsp;by the destruction of methanol through reactions involving atomic H forming the CH$_2$OH and&amp;nbsp;CH$_3$O radicals. Nevertheless, it seems that gas-phase chemistry alone only accounts for a&amp;nbsp;significant but not entire&amp;nbsp;part of the observed DME and MF abundances of a few percent with&amp;nbsp;respect to methanol. Alternative pathways, such as cold surface chemistry, for instance,&amp;nbsp;could also play a role.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3469667"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3469667"/>
        <dcat:byteSize>2346808</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/3469667/files/Kavak_poster_groningen2017.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
31
28
views
downloads
All versions This version
Views 3131
Downloads 2828
Data volume 65.7 MB65.7 MB
Unique views 2626
Unique downloads 2323

Share

Cite as