Conference paper Open Access

Multi-objective Container Deployment on Heterogeneous Clusters

Hu, Yang; de Laat, Cees; Zhao, Zhiming


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/80316fdb-b06c-4fb9-8357-0342a641f145/2019.workshop.CCGRID2019.camera.pdf"
      }, 
      "checksum": "md5:9971da178643d48f65842d95e2bf084c", 
      "bucket": "80316fdb-b06c-4fb9-8357-0342a641f145", 
      "key": "2019.workshop.CCGRID2019.camera.pdf", 
      "type": "pdf", 
      "size": 227577
    }
  ], 
  "owners": [
    26570
  ], 
  "doi": "10.1109/CCGRID.2019.00076", 
  "stats": {
    "version_unique_downloads": 50.0, 
    "unique_views": 116.0, 
    "views": 121.0, 
    "version_views": 121.0, 
    "unique_downloads": 50.0, 
    "version_unique_views": 116.0, 
    "volume": 12744312.0, 
    "version_downloads": 56.0, 
    "downloads": 56.0, 
    "version_volume": 12744312.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1109/CCGRID.2019.00076", 
    "latest_html": "https://zenodo.org/record/3466785", 
    "bucket": "https://zenodo.org/api/files/80316fdb-b06c-4fb9-8357-0342a641f145", 
    "badge": "https://zenodo.org/badge/doi/10.1109/CCGRID.2019.00076.svg", 
    "html": "https://zenodo.org/record/3466785", 
    "latest": "https://zenodo.org/api/records/3466785"
  }, 
  "created": "2019-10-01T11:53:53.167441+00:00", 
  "updated": "2020-01-20T16:57:41.118940+00:00", 
  "conceptrecid": "3466784", 
  "revision": 5, 
  "id": 3466785, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.1109/CCGRID.2019.00076", 
    "version": "Camera ready", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Multi-objective Container Deployment on Heterogeneous Clusters", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3466784"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3466785"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "676247", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::676247"
        }, 
        "title": "A Europe-wide Interoperable Virtual Research Environment to Empower Multidisciplinary Research Communities and Accelerate Innovation and Collaboration", 
        "acronym": "VRE4EIC", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "654182", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::654182"
        }, 
        "title": "Environmental Research Infrastructures Providing Shared Solutions for Science and Society", 
        "acronym": "ENVRI PLUS", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "643963", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::643963"
        }, 
        "title": "Software Workbench for Interactive, Time Critical and Highly self-adaptive cloud applications", 
        "acronym": "SWITCH", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "825134", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::825134"
        }, 
        "title": "smART socIal media eCOsytstem in a blockchaiN Federated environment", 
        "acronym": "ARTICONF", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Container", 
      "Deployment", 
      "Multi-objective", 
      "Heterogeneous"
    ], 
    "publication_date": "2019-10-01", 
    "creators": [
      {
        "affiliation": "University of Amsterdam", 
        "name": "Hu, Yang"
      }, 
      {
        "affiliation": "University of Amsterdam", 
        "name": "de Laat, Cees"
      }, 
      {
        "orcid": "0000-0002-6717-9418", 
        "affiliation": "University of Amsterdam", 
        "name": "Zhao, Zhiming"
      }
    ], 
    "meeting": {
      "acronym": "CCGrid19", 
      "url": "https://www.ccgrid2019.org/", 
      "dates": "14  May 2019", 
      "place": "Cyprus", 
      "title": "International workshop on Network aware big data computing, in the proceedings of IEEE CCGrid 2019"
    }, 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }, 
    "description": "<p>Operating system (OS) containers are becoming</p>\n\n<p>increasingly popular in cloud computing for improving productivity</p>\n\n<p>and code portability. However, existing deployment</p>\n\n<p>scheduling solutions mainly treat each container deployment</p>\n\n<p>as an independent request, and focus on the single aspect of</p>\n\n<p>resource utilization or load balancing, or work on homogeneous</p>\n\n<p>clusters. In this paper, we propose a new container deployment</p>\n\n<p>algorithm to satisfy multiple objectives on heterogeneous clusters.</p>\n\n<p>We analyze the deployment requirements of container-based</p>\n\n<p>infrastructure and formulate the deployment problem as a vector</p>\n\n<p>bin packing problem with heterogeneous bins. We focus on</p>\n\n<p>three objectives: multi-resource guarantee, load balancing, and</p>\n\n<p>dependency awareness. The goal of the proposed algorithm is</p>\n\n<p>to improve the tradeoff between load balancing and dependency</p>\n\n<p>awareness with multi-resource guarantees. Based on the algorithm,</p>\n\n<p>we implement a prototype scheduler to deploy containers</p>\n\n<p>on heterogeneous clusters. We evaluate our scheduler over a</p>\n\n<p>wide range of workload scenarios by simulation, which shows</p>\n\n<p>that our scheduler significantly outperforms existing schedulers</p>\n\n<p>of the container orchestration platforms.</p>"
  }
}
121
56
views
downloads
Views 121
Downloads 56
Data volume 12.7 MB
Unique views 116
Unique downloads 50

Share

Cite as