Journal article Open Access
Kochergin, Yaroslav S.;
Noda, Yu;
Kulkarni, Ranjit;
Škodáková, Klára;
Tarábek, Ján;
Schmidt, Johannes;
Bojdys, Michael J.
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2019-10-01</subfield> </datafield> <controlfield tag="005">20200120170919.0</controlfield> <controlfield tag="001">3466483</controlfield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="o">oai:zenodo.org:3466483</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Fully aromatic, organic polymers have the advantage of being composed from light, abundant elements, and are hailed as candidates in electronic and optical devices &ldquo;beyond silicon&rdquo;, yet, applications that make use of their &pi;-conjugated backbone and optical bandgap are lacking outside of heterogeneous catalysis. Herein, we use a series of sulfur- and nitrogen-containing porous polymers (SNPs) as real-time optical and electronic sensors reversibly triggered and re-set by acid and ammonia vapors. Our SNPs incorporate donor-acceptor and donor-donor motifs in extended networks and enable us to study the changes in bulk conductivity, optical bandgap, and fluorescence life-times as a function of &pi;-electron de-/localization in the pristine and protonated states. Interestingly, we find that protonated donor-acceptor polymers show a decrease of the optical bandgap by 0.42 eV to 0.76 eV and longer fluorescence life-times. In contrast, protonation of a donor-donor polymer does not affect its bandgap; however, it leads to an increase of electrical conductivity by up to 25-fold and shorter fluorescence life-times. The design strategies highlighted in this study open new avenues towards useful chemical switches and sensors based on modular purely organic materials.</p></subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Humboldt-Universität zu Berlin</subfield> <subfield code="0">(orcid)0000-0003-0715-5534</subfield> <subfield code="a">Noda, Yu</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Humboldt-Universität zu Berlin</subfield> <subfield code="0">(orcid)0000-0002-8251-1407</subfield> <subfield code="a">Kulkarni, Ranjit</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Institute of Organic Chemistry and Biochemistry of the CAS</subfield> <subfield code="a">Škodáková, Klára</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Institute of Organic Chemistry and Biochemistry of the CAS</subfield> <subfield code="0">(orcid)0000-0003-0116-3824</subfield> <subfield code="a">Tarábek, Ján</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Technische Universität Berlin</subfield> <subfield code="a">Schmidt, Johannes</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Humboldt-Universität zu Berlin</subfield> <subfield code="0">(orcid)0000-0002-2592-4168</subfield> <subfield code="a">Bojdys, Michael J.</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">1748095</subfield> <subfield code="z">md5:54a2bac5121d8afc804926872d830385</subfield> <subfield code="u">https://zenodo.org/record/3466483/files/20190929_Manuscript_CLEAN.docx</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">16858275</subfield> <subfield code="z">md5:4aabb9b43a5d9172447f996451a48403</subfield> <subfield code="u">https://zenodo.org/record/3466483/files/20190929_SI_CLEAN.docx</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">3887501</subfield> <subfield code="z">md5:b6dfa3f013206f06af29f1178e2c9a25</subfield> <subfield code="u">https://zenodo.org/record/3466483/files/Video 1-YAR SNP-NDT1.mp4</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Humboldt-Universität zu Berlin</subfield> <subfield code="0">(orcid)0000-0002-9060-6350</subfield> <subfield code="a">Kochergin, Yaroslav S.</subfield> </datafield> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Conjugated microporous polymers</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">donor-acceptor systems</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">acid-base sensor</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">fluorescence sensing</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">semiconductors</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.1021/acs.macromol.9b01643</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Sulfur- and nitrogen-containing porous donor-acceptor polymers as real-time optical and chemical sensors</subfield> </datafield> <datafield tag="536" ind1=" " ind2=" "> <subfield code="c">678462</subfield> <subfield code="a">Layered functional materials - beyond 'graphene'</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> </record>
Views | 160 |
Downloads | 34 |
Data volume | 186.7 MB |
Unique views | 141 |
Unique downloads | 29 |