Other Open Access

Ground Characterization Studies in Canakkale Pilot Site of LIQueFACT Project

Ozcep, F.; Oztoprak, S.; Aysal, N.; Bozbey, I.; Tezel, O.; Oser, C.; Sargin, S.; Bekin, E.; Almasraf, M.; Cinku, M. C.; Ozdemir, K.

The our aim is to outline the ground characterisation studies in Canakkale test site. Study is based on the EU H2020 LIQUEFACT project entitled “Liquefact: Assessment and mitigation of liquefaction potential across Europe: a holistic approach to protect structures / infrastructures for improved resilience to earthquake-induced liquefaction disasters”. Objectives and extent of ground characterization for Canakkale test site includes pre-existing soil investigation studies and complementary field studies. There were several SPT and geophysical tests carried out in the study area. Within the context of the complementary tests, six (6) study areas in the test site were chosen and complementary tests were carried out in these areas. In these areas, additional boreholes were opened and SPT tests were performed. It was decided that additional CPT (CPTU and SCPT) and Marchetti Dilatometer (DMT) tests should be carried out within the scope of the complementary testing. Seismic refraction, MASW and micro tremor measurements had been carried out in pre-existing studies. Shear wave velocities obtained from MASW measurements were evaluated to the most rigorous level. These tests were downhole seismic, PS-logging, seismic refraction, 2D-ReMi, MASW, micro tremor (H/V Nakamura method), 2D resistivity and resonance acoustic profiling (RAP). RAP is a new technique which will be explained briefly in the relevant section. Dynamic soil properties had not been measured in pre-existing studies, therefore these properties were investigated within the scope of the complementary tests. Selection of specific experimental tests of the complementary campaign was based on cost-benefit considerations Within the context of complementary field studies, dynamic soil properties were measured using resonant column and cyclic direct shear tests. Several sieve analyses and Atterberg Limits tests which were documented in the pre-existing studies were evaluated. In the complementary study carried out, additional sieve analyses and Atterberg Limit tests were carried out. It was aimed to make some correlations between geophysical measurements and other field measurements; such as SPT, blow count values.

Files (112.0 kB)
Name Size
2017 Ozcep et al - AGU Fall Meeting USA.pdf
112.0 kB Download
All versions This version
Views 2020
Downloads 1313
Data volume 1.5 MB1.5 MB
Unique views 1616
Unique downloads 1212


Cite as