Conference paper Embargoed Access

Prediction of liquefaction damage with artificial neural networks

Paolella Luca; Salvatore Erminio; Spacagna Rose Line; Modoni Giuseppe; Ochmanski Maciej


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3463412</identifier>
  <creators>
    <creator>
      <creatorName>Paolella Luca</creatorName>
      <affiliation>University of Cassino and Southern Lazio</affiliation>
    </creator>
    <creator>
      <creatorName>Salvatore Erminio</creatorName>
      <affiliation>University of Cassino and Southern Lazio</affiliation>
    </creator>
    <creator>
      <creatorName>Spacagna Rose Line</creatorName>
      <affiliation>University of Cassino and Southern Lazio</affiliation>
    </creator>
    <creator>
      <creatorName>Modoni Giuseppe</creatorName>
      <affiliation>University of Cassino and Southern Lazio</affiliation>
    </creator>
    <creator>
      <creatorName>Ochmanski Maciej</creatorName>
      <affiliation>Silesian University of Technology - Gliwice (Poland)</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Prediction of liquefaction damage with artificial neural networks</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>Liquefaction</subject>
    <subject>Artificial Neural Networks</subject>
  </subjects>
  <dates>
    <date dateType="Available">2020-06-30</date>
    <date dateType="Accepted">2019-06-23</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3463412</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3463411</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/1.0/legalcode">Creative Commons Attribution 1.0 Generic</rights>
    <rights rightsURI="info:eu-repo/semantics/embargoedAccess">Embargoed Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The survey of the damage occurred on land, buildings and infrastructures&lt;br&gt;
extensively affected by liquefaction, coupled with a comprehensive investigation of the subsoil&lt;br&gt;
properties enables to identify the factors that determine the spatial distribution of the phenomenon.&lt;br&gt;
With this goal, a database was created in a Geographic Information platform merging&lt;br&gt;
records of local seismicity, subsoil layering evaluated by cone penetration tests and&lt;br&gt;
groundwater level distribution for the relevant case study of San Carlo (Emilia Romagna-&lt;br&gt;
Italy) struck by a severe earthquake in 2012. Here liquefaction phenomena were observed on a&lt;br&gt;
portion of the village in the form of sand ejecta, lateral spreading and various damages on&lt;br&gt;
buildings and infrastructures. The location of damage allows to test possible relations with the&lt;br&gt;
factors characterizing susceptibility, triggering and severity of liquefaction. The relation&lt;br&gt;
among the different variables has been herein sought by training a specifically implemented&lt;br&gt;
Artificial Neural Network. A relation has thus been inferred between damage and thickness of&lt;br&gt;
the liquefiable layer and of the upper crust, seismic input and soil characteristics.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/700748/">700748</awardNumber>
      <awardTitle>Assessment and mitigation of liquefaction potential across Europe: a holistic approach to protect structures / infrastructures for improved resilience to earthquake-induced liquefaction disasters</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
2
2
views
downloads
All versions This version
Views 22
Downloads 22
Data volume 1.4 MB1.4 MB
Unique views 11
Unique downloads 11

Share

Cite as