Journal article Open Access

Wing geometric morphometrics as a tool for taxonomic identification of two fly species (Diptera: Muscidae) of forensic relevance

José Antonio Nuñez; Pablo Jarrín-V; Jonathan Liria


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3462982</identifier>
  <creators>
    <creator>
      <creatorName>José Antonio Nuñez</creatorName>
      <affiliation>Department of Morphological and Forensic Sciences. School of Biomedical and Technological Sciences. Faculty of Health Sciences, Universidad de Carabobo, Valencia, Venezuela</affiliation>
    </creator>
    <creator>
      <creatorName>Pablo Jarrín-V</creatorName>
      <affiliation>Research Group on Population and Environment, Universidad Regional Amazónica Ikiam, Napo, Ecuador.</affiliation>
    </creator>
    <creator>
      <creatorName>Jonathan Liria</creatorName>
      <affiliation>Center of Studies in Applied Zoology, Universidad de Carabobo, Valencia, Venezuela.</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Wing geometric morphometrics as a tool for taxonomic identification of two fly species (Diptera: Muscidae) of forensic relevance</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>Muscomorpha, Calyptratae, forensic entomology, landmarks.</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-09-30</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3462982</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3462981</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The taxonomic identification of fly species through wing geometry is a helpful tool for entomologists and&lt;br&gt;
officials involved in forensic research, who not necessarily require expertise on insect taxonomy.&lt;br&gt;
Members of the Muscidae family are relevant sources of evidence in forensic entomology; however,&lt;br&gt;
developing countries often lack experts in the taxonomical identification of essential species for the&lt;br&gt;
assessment of aspects such as the minimum postmortem interval (mPMI). Our study proposes a low-cost,&lt;br&gt;
fast, and technologically-accessible quantitative tool for the identification of Atherigona orientalis and&lt;br&gt;
Ophyra aenescens, associated with human corpses at advanced states of decomposition. We propose a tool&lt;br&gt;
that is based on the geometric variability observed in eight homologous landmarks on wing veins and the&lt;br&gt;
interpretation of morphometric estimates after a generalized Procrustes analysis. The use of a geometric&lt;br&gt;
approach for effective discrimination between Atherigona orientalis and Ophyra aenescens was supported&lt;br&gt;
by statistically significant differences in wing conformation and size. The evidence presented in this study&lt;br&gt;
shows that the analysis of geometric variability in the wing morphology of species of forensic relevance&lt;br&gt;
can contribute to simple and objective species identification. Geometric morphometrics is a simple and&lt;br&gt;
readily available tool for forensic science.&lt;/p&gt;</description>
  </descriptions>
</resource>
636
265
views
downloads
All versions This version
Views 636636
Downloads 265265
Data volume 133.3 MB133.3 MB
Unique views 555555
Unique downloads 230230

Share

Cite as