Dataset Open Access

A Reproducible Comparison of RSSI Fingerprinting Localization Methods Using LoRaWAN (datasets)

Anagnostopoulos Grigorios; Kalousis Alexandros


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Anagnostopoulos Grigorios</dc:creator>
  <dc:creator>Kalousis Alexandros</dc:creator>
  <dc:date>2019-09-26</dc:date>
  <dc:description>The train/validation/test sets used in the study "A Reproducible Comparison of RSSI Fingerprinting Localization Methods Using LoRaWAN".

The dataset used to create these sets was published in:

http://www.mdpi.com/2306-5729/3/2/13

The full dataset is available here:

https://doi.org/10.5281/zenodo.1212478


The credit for the creation of the dataset goes to Aernouts, Michiel;  Berkvens, Rafael; Van Vlaenderen, Koen and  Weyn, Maarten.</dc:description>
  <dc:identifier>https://zenodo.org/record/3461726</dc:identifier>
  <dc:identifier>10.5281/zenodo.3461726</dc:identifier>
  <dc:identifier>oai:zenodo.org:3461726</dc:identifier>
  <dc:relation>doi:10.5281/zenodo.1212478</dc:relation>
  <dc:relation>doi:10.5281/zenodo.3461725</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>IoT, Fingerprinting, LoRaWAN, Localization, Positioning, Reproducibility, Preprocessing, Machine Learning, kNN, ExtraTrees,  MLP</dc:subject>
  <dc:title>A Reproducible Comparison of RSSI Fingerprinting Localization Methods Using LoRaWAN (datasets)</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>dataset</dc:type>
</oai_dc:dc>
199
167
views
downloads
All versions This version
Views 199199
Downloads 167167
Data volume 1.3 GB1.3 GB
Unique views 167167
Unique downloads 102102

Share

Cite as