Supplementary Information:

Effect of GO additive in ZnO/rGO nanocomposites with enhanced photosensitivity and photocatalytic activity

Chatchai Rodwihok¹, Duangmanee Wongratanaphisan², Yen Linh Thi Ngo¹, Mahima Khandelwal¹, Seung Hyun Hur¹ and Jin Suk Chung^{1,*}

¹School of Chemical Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749, Republic of Korea; c.rodwihok@hotmail.com (C.R.); ngoyenlinh0912@gmail.com (Y.L.T.N.); mahimaiitr@gmail.com (M.K.); shhur@ulsan.ac.kr (S.H.H.)

²Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; duangmanee.wong@cmu.ac.th (D.W.)

*Correspondence: jschung@ulsan.ac.kr (J.S.C.)

Content:

Table S1. Comparisons of photosensitivity and time-dependent photocurrent response between the present work and other reported UV detectors.

Table S2. Comparisons of photocatalytic activity between the present work and other reported research.

Figure S1. The thickness of prepared films by spray coating

Figure S2. Current of as-synthesized ZnO/rGO with bending radius; (a) ZnO, (b) ZnO/rGO (10%), (c) ZnO/rGO (20%), and (d) ZnO/rGO (30%).

Figure S3. Time-dependent absorption spectra of Methyl blue (MB) solution under visible light using (a) ZnO, (b) ZnO/rGO (10%), (c) ZnO/rGO (20%), and ZnO/rGO (30%) as a photocatalyst.

Figure S4. The photoluminescence spectra of pristine ZnO and as-synthesized ZnO/rGO

Table S1 C	omparisons of	photosensitivity a	nd time-dependent	photocurrent response	between the present	work and other reported UV of	detectors.
------------	---------------	--------------------	-------------------	-----------------------	---------------------	-------------------------------	------------

Structure	Substrate	λ_{UV} (nm)	UV intensity (W/cm ²)	Bias voltage (V)	Dark current (A)	Photosensitivity (I _{UV} /I _{DARK})	Response time (s)	Ref.
MgZnO/ZnO thin film	Glass	365	3.20×10^{-3}	4	~4.64 ×10 ⁻⁶	~1.01	-	[1]
ZnO nanowires	SiO ₂ /Si	325	0.42×10^{-3}	1.5	$\sim 0.50 \times 10^{-6}$	<4	-	[2]
ZnO nanowires	SiO2/Si	300	2×10^{-3}	0.1	$\sim 12.70 \times 10^{-6}$	~1.51	0.2	[3]
	SiO ₂ /Si	500	19.50×10^{-3}	0.1	$\sim 12.50 \times 10^{-6}$	~1.40	0.3	[3]
ZnO nanostructures	p-Si	365	0.80	3	$\sim 3.50 \times 10^{-6}$	~1.71	-	[4]
Ti-doped ZnO thin film	glass	~365	2×10^{-3}	5	$\sim 15.00 \times 10^{-9}$	~6.80	135	[5]
ZnO/rGO nanostructures	glass	365	0.80×10^{-3}	2	$\sim 7.00 \times 10^{-6}$	4	44	[6]
ZnO/GO nanostructures	glass	368	$0.80 imes 10^{-3}$	4	-	20.10	-	[7]
ZnO/rGO (20%)	transparent film	365	0.62×10^{-3}	2	3.98×10^{-9}	8.81	18.16	This work

Table S2 Comparisons of photocatalytic activity between the present work and other reported research.

Catalyst	Catalyst concentration (g L ⁻¹)	Light source	MB concentration (mg L ⁻¹)	Degradation rate (%) and time (min)	<i>k_c</i> (min ⁻¹)	Ref.
ZnO/GO (3%)	0.4	Metal halide lamp	10	~92% / 30	0.042	[8]
$ZnO-g-C_3N_4/GO(50\%)$	0.3	Visible light	10	99% / 90	0.030	[9]
GO/ZnO (1:2)	0.4	UV light (254 nm)	5	94.5% / 60	-	[10]
ZnO/rGO (2.5%)	0.5	Mercury lamp (310-400 nm)	10	~80% / 120	0.012	[11]
ZnO NPs/rGO	0.3	Hg lamp (365 nm)	10	99.5%/180	-	[12]
ZnO/rGO	0.1	Mercury lamp (365-366 nm)	10	83%/10	-	[13]
ZnO/rGO	0.15	Hg lamp (365 nm)	5	88%/260	-	[14]
ZnO/rGO (1.5%)	0.2	Natural sunlight	5	82.3% / -	-	[15]
$ZnO/g-C_3N_4(500 \ ^{\circ}C)$	0.2	4 - Visible-light lamps (545 nm)	10	~99% / 180	~0.033	[16]
ZnO/rGO (20%)	0.2	Fluorescent lamp	10	93.78% / 60	0.0482	This work

Figure S1. The thickness of prepared films by spray coating

Figure S2. Current of as-synthesized ZnO/rGO with bending radius; (**a**) ZnO, (**b**) ZnO/rGO (10%), (**c**) ZnO/rGO (20%), and (**d**) ZnO/rGO (30%).

Figure S3. Time-dependent absorption spectra of Methyl blue (MB) solution under visible light using (**a**) ZnO, (**b**) ZnO/rGO (10%), (**c**) ZnO/rGO (20%), and (**d**) ZnO/rGO (30%) as a photocatalyst.

Figure S4. The photoluminescence spectra of pristine ZnO and as-synthesized ZnO/rGO

References

- 1. Rana, V. S.; Rajput, J. K.; Pathak, T. K.; Purohit, L. P., Multilayer MgZnO/ZnO thin films for UV photodetectors. *Journal of Alloys and Compounds* **2018**, 764, 724-729.
- 2. Lang, Y.; Gao, H.; Jiang, W.; Xu, L.; Hou, H., Photoresponse and decay mechanism of an individual ZnO nanowire UV sensor. *Sensors and Actuators A: Physical* **2012**, 174, 43-46.
- 3. Chao, L.-C.; Ye, C.-C.; Chen, Y.-P.; Yu, H.-Z., Facile fabrication of ZnO nanowire-based UV sensors by focused ion beam micromachining and thermal oxidation. *Applied Surface Science* **2013**, 282, 384-389.
- 4. Bedia, A.; Bedia, F. Z.; Benyoucef, B.; Hamzaoui, S., Electrical Characteristics of Ultraviolet Photodetector based on ZnO Nanostructures. *Physics Procedia* **2014**, 55, 53-60.
- 5. Shewale, P. S.; Lee, N. K.; Lee, S. H.; Kang, K. Y.; Yu, Y. S., Ti doped ZnO thin film based UV photodetector: Fabrication and characterization. *Journal of Alloys and Compounds* **2015**, 624, 251-257.
- 6. Safa, S.; Sarraf-Mamoory, R.; Azimirad, R., Investigation of reduced graphene oxide effects on ultra-violet detection of ZnO thin film. *Physica E: Low-dimensional Systems and Nanostructures* **2014**, 57, 155-160.
- 7. Zare, M.; Safa, S.; Azimirad, R.; Mokhtari, S., Graphene oxide incorporated ZnO nanostructures as a powerful ultraviolet composite detector. *Journal of Materials Science: Materials in Electronics* **2017**, 28, (9), 6919-6927.
- 8. Qin, J.; Zhang, X.; Xue, Y.; Kittiwattanothai, N.; Kongsittikul, P.; Rodthongkum, N.; Limpanart, S.; Ma, M.; Liu, R., A facile synthesis of nanorods of ZnO/graphene oxide composites with enhanced photocatalytic activity. *Applied Surface Science* **2014**, 321, 226-232.
- 9. Jo, W.-K.; Clament Sagaya Selvam, N., Enhanced visible light-driven photocatalytic performance of ZnO–g-C3N4 coupled with graphene oxide as a novel ternary nanocomposite. *Journal of Hazardous Materials* **2015**, 299, 462-470.

- 10. Munawaroh, H.; Sari, P. L.; Wahyuningsih, S.; Ramelan, A. H., The photocatalytic degradation of methylene blue using graphene oxide (GO)/ZnO nanodrums. *AIP Conference Proceedings* **2018**, 2014, (1), 020119.
- 11. Jabeen, M.; Ishaq, M.; Song, W.; Xu, L.; Maqsood, I.; Deng, Q., UV-Assisted Photocatalytic Synthesis of ZnO-Reduced Graphene Oxide Nanocomposites with Enhanced Photocatalytic Performance in Degradation of Methylene Blue. *ECS Journal of Solid State Science and Technology* **2017**, 6, (4), M36-M43.
- 12. Azarang, M.; Shuhaimi, A.; Yousefi, R.; Moradi Golsheikh, A.; Sookhakian, M., Synthesis and characterization of ZnO NPs/reduced graphene oxide nanocomposite prepared in gelatin medium as highly efficient photo-degradation of MB. *Ceramics International* **2014**, 40, (7, Part B), 10217-10221.
- 13. He, J.; Niu, C.; Yang, C.; Wang, J.; Su, X., Reduced graphene oxide anchored with zinc oxide nanoparticles with enhanced photocatalytic activity and gas sensing properties. *RSC Advances* **2014**, 4, (104), 60253-60259.
- 14. Lv, T.; Pan, L.; Liu, X.; Lu, T.; Zhu, G.; Sun, Z., Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction. *Journal of Alloys and Compounds* **2011**, 509, (41), 10086-10091.
- 15. Omar, F. S.; Nay Ming, H.; Hafiz, S. M.; Ngee, L. H., Microwave Synthesis of Zinc Oxide/Reduced Graphene Oxide Hybrid for Adsorption-Photocatalysis Application. *International Journal of Photoenergy* **2014**, 2014, 8.
- 16. Jung, H.; Pham, T.-T.; Shin, E. W., Interactions between ZnO nanoparticles and amorphous g-C3N4 nanosheets in thermal formation of g-C3N4/ZnO composite materials: The annealing temperature effect. *Applied Surface Science* **2018**, 458, 369-381.