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Abstract

We solve the word problem for free double categories without equations
between generators by translating it to the word problem for 2-categories.
This yields a quadratic algorithm deciding the equality of diagrams in a
free double category. The translation is of interest in its own right since
and can for instance be used to reason about double categories with the
language of 2-categories, sidestepping the pinwheel problem.

Introduction

The combinatorial structure of double categories has attracted a lot of atten-
tion since the notion was introduced by Ehresmann [1963]. Informally, one
can describe double categories by the shape of their string diagrams. Unlike
2-categories where the edges are required to flow along a specified direction
(usually vertically), 2-cells in double categories can connect to both horizon-
tal and vertical wires. Therefore they not only have a vertical domain and
codomain, but also a horizontal domain and codomain. These definitions are
made precise in Section 1.

α

(a) A morphism in a 2-category

α

(b) A morphism in a double category

At a first glance, double categories could be considered a more natural cate-
gorical axiomatization of planar systems, since they treat the two dimensions of
the plane in a dual, interchangeable way. In comparison, the vertical and hor-
izontal compositions in 2-categories are intrisically different, forcing diagrams
to flow in a specified direction. However, this uniform behaviour in two dimen-
sions comes at a cost known as the pinwheel problem. Concretely, this problem
manifests itself in the fact that not all planar arrangements of 2-cells can be
composed, even if all local compatibility conditions are satisfied. For a diagram
to be interpreted as a 2-cell it must be binary composable and this can fail if
the diagram contains a so-called pinwheel, represented later in Figure 2.
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A lot of work has already been dedicated to characterizing which arrange-
ments of 2-cells can be composed in a double category, using order-theoretic
representations of these arragements [Dawson and Paré, 1993, Dawson, 1995].
In this work, we focus instead on the word problem for 2-cells in double cate-
gories. Given two binary composable diagrams, we want to determine whether
they represent the same 2-cell or not. Dawson et al. [2004] have studied this
problem in the case of free extensions of double categories, showing for instance
that the word problem can become undecidable with the addition of a single
free 2-cell.

We study the word problem for free double categories, meaning that no equa-
tions are imposed on the generators. The only equations relating expressions in
this context are the axioms of double categories. We introduce a correspondence
between a free double category and a free 2-category, for which the word prob-
lem is solved [Delpeuch and Vicary, 2018]. We obtain as a result a quadratic
time algorithm to determine if two double category diagrams are equivalent
(Theorem 1). The translation used is of its own interest, as it establishes a tight
relation between the topology of 2-categories and that of double categories.

The idea of the correspondence is very simple. In order to simulate the
horizontal wires of a double category in a 2-category, we simply “rotate the
string diagrams by π

4 ”. In Section 3, we make this correspondence precise and
show that it respects the notions of equivalences on both structures. This lets
us solve the word problem for free double categories in Section 5.

α t
7−→ α

This correspondence between free double categories and free 2-categories is
motivated by the word problem but is of interest in its own right: it shows that
one does not gain much by considering a free double category instead of the
corresponding free 2-category. Reasoning in a 2-category avoids the pinwheel
problem entirely as the validity of a string diagram in this structure can be
checked locally. Section 6 shows how the translation could be extended to
diagrams which include pinwheels, giving them a meaning in the free 2-category.
This has also practical implications: one can use the translation to reason about
double categories in proof assistants such as homotopy.io [Heidemann et al.,
2019] which use a globular notion of n-category.
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1 Double categories

Definition 1. Let C be a category. An internal category in C consists of the
following data:

2
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• a pair of objects M,O, that we think of as the sets of morphisms and
objects

• morphisms d, c ∈ C(M,O), intuitively the domain and codomain functions

• a morphism ι ∈ C(O,M), taking an object to its identity map;

• a morphism µ ∈ C(P,M), where P is the pullback (which is therefore

required to exist) of M
d
−→ O

c
←− M . This represents the multiplication of

compatible pairs of morphisms.

These morphisms are required to satisfy equalities, which correspond to the ax-
ioms of a category (associativity and unitality of composition, as well as equa-
tions for the domains and codomains of identities and composites).

The definition above is chosen such that an internal category in Set is a small
category. The purpose of this concept is that its generality makes it possible to
interpret it in other categories.

Definition 2. A double category is an internal category in Cat, the category
of small categories.

This definition is concise and this conciseness justifies the interest in this
structure, which was originally introduced by Ehresmann [1963]. However, it
is of little help to build intuition about the nature of such an object, so let
us unfold its content. A double category consists of an object category O and
a morphisms category M, with functors D,C : M → O, I : O → M and
M : P →M where P is defined as above. We will call

• objects of O as objects of the double category;

• morphisms of O as vertical morphisms of the double category;

• objects ofM as horizontal morphisms of the double category;

• morphisms of M as 2-cells of the double category.

Initially, it can seem confusing that objects of M are thought of as mor-
phisms. The reason for this is that by forgetting morphisms, i.e. taking the
image of our internal category via the forgetful functor Cat → Set, we obtain
an internal category in Set, i.e. a small category. We will call this the hori-

zontal category of the double category. As its morphisms are the objects of
M, this justifies their name. These horizontal morphisms have as domains and
codomains objects of O. These objects are also involved in another category,
namely O itself, that we will call the vertical category of the double category.

Any 2-cell α has two horizontal morphisms as domain and codomain, domM(α)
and codM(α) as a morphism ofM. We will call these the horizontal domain

and codomain of α. Furthermore, it is associated by the internal category
structure to D(α) and C(α), which are vertical morphisms. We will therefore
call these the vertical domain and codomain of α. Finally, the functori-
ality of D and C ensures that for instance D(domM(α)) = domO(D(α)) and
similarly for C and cod. This suggests the representation of α as a square:
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A B

E F

α

domM(α)

codM(α)

D(α) C(α)

Although this diagram is similar to commutative diagrams used in category
theory, we stress that it is here used in a more general sense, as composing
horizontal and vertical morphisms does not make sense in general.

The 2-cells in a double category can be composed in two different ways.
First, as morphisms ofM, two 2-cells can be composed if they have compatible
horizontal domain and codomain. We call this the vertical composition.
Second, the functor M defines a composition for 2-cells with compatible vertical
domains and codomain, and we call this the horizontal composition. These
compositions can be represented with diagrams:

A B

U V

α ◦ β

dom(α ◦ β)

cod(α ◦ β)

D(α ◦ β) C(α ◦ β) =

A B

E F

U V

β

α

dom(β)

cod(α)

D(β) C(β)

D(α) C(α)

A B

U V

M(α, β)

dom(M(α, β))

cod(M(α, β))

D(M(α, β)) C(M(α, β)) =

A B

E F

U

V

α β

dom(α)

cod(α)

D(α) C(β)

dom(β)

cod(β)

The functoriality of M ensures that these two compositions are compatible:
(α ⋆ δ) ◦ (β ⋆ γ) = (α ◦ β) ⋆ (δ ◦ γ) for all 2-cells such that both sides of the
equation are defined. This means that the following diagram is unambiguous:

A B C

D E F

G H I

β γ

α δ
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Figure 2: A pinwheel diagram, which cannot be expressed as a binary composite

Given that the horizontal and vertical compositions are also associative, it
is natural to represent composite 2-cells as tilings of rectangles in the plane,
with the appropriate conditions on edges to ensure compatibility between the
composed 2-cells. Dawson and Pare [1993] have shown that if there are two ways
to interpret such a tiling as a tree of horizontal and vertical compositions, then
the resulting 2-cells will be equal. However, there exist tilings which satisfy the
local compatibility conditions but do not arise from the horizontal and vertical
compositions. The minimal example of this is known as the pinwheel and is
shown in Figure 2.
It was then shown by Dawson [1995] that this is essentially the only obstacle to
composition of diagrams in double categories.

2 Free double categories

Double categories are rich objects and defining them therefore requires some
care. Given horizontal and vertical categories with the same objects, and a set
of generating tiles whose boundaries are chosen from the horizontal and vertical
categories, we want to generate the free double category on these tiles.

One simple approach to generate such a double category would be to use
its definition as internal category object in Cat, and simply internalize the
definition of a free category on a graph. A graph object in Cat is called a
double graph and is essentially a double category without identities and com-
positions. Interpreted in Cat, the construction which defines a free category
object from a graph object does give a double category, but as pointed out by
Dawson and Paré [2002] this imposes important restrictions on the boundaries
of the generating tiles: they must be generating morphisms of the resulting
vertical and horizontal categories. Therefore, all generated composites have a
grid-like shape:

Dawson and Paré [2002] propose a more general construction which allows
identities as cell boundaries. To do so they use the notion of reflexive graph: it
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is a directed graph with designated loops on each vertex. One can define the
free category generated by a reflexive graph, where the loops are interpreted as
identities. Internalized in Cat, this gives rise to the notion of double reflex-

ive graph which generates a double category. This makes it possible to use
generators which have identities as boundaries:

As this is still not as general as it could be, Fiore et al. [2008] introduces
the notion of double derivation scheme. A double derivation scheme is a
double graph whose horizontal and vertical objects form categories. Therefore,
generating a double category from a double derivation scheme makes it possible
to use arbitrary boundaries for the generating cells. The main difference with
the previous approaches is that the notion of double derivation scheme does not
arise by internalizing in Cat a notion formulated in the internal language of
categories. Moreover a double derivation scheme can also introduce algebraic
equations between expressions, quotienting the generated structure accordingly.
In our case, no such equations are used, so we give a simpler description of the
construction.

Definition 3. A double signature S = (A,H, V, C) is given by:

• a set of objects A;

• a set of generating horizontal morphisms H;

• a set of generating vertical morphisms V ;

• a set of generating 2-cells C.

Furthermore each h ∈ H is associated with domh, codh ∈ A and similarly for
V . This defines free categories H∗ and V ∗. Each α ∈ C is associated with
compatible vertical and horizontal domains and codomains domhα, codhα ∈
H∗ and domvα, codvα ∈ V ∗. The required compatibility is domdomhα =
domdomvα and three other similar equations.

The set of 2-cells of the double category generated by this data is generated
inductively from the generators in C, vertical and horizontal identities. From
these generators we take the closure by vertical and horizontal composition of
compatible cells: this gives us the set of 2-cell expressions on the signature. To
obtain the set of 2-cells, we quotient by unitality and associativity of the vertical
and horizontal compositions and by the exchange law. Furthermore, horizontal
and vertical identities on identity morphisms (depicted as empty 2-cells) are
equated. These are precisely the laws of double categories, hence this defines
the free double category Sd on the given data.
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Expressions in double categories can be drawn as string diagrams [Myers,
2016], and in the sequel we will use the terms “expression” and “diagram” inter-
changeably. Here is an example of a series of equivalences between expressions
of 2-cells, drawn as string diagrams:

∼ ∼ ∼ ∼

We draw horizontal wires in red, this will help us to to distinguish them from
vertical wires in the next section. We also ommit region colors as they are
irrelevant for equivalences and do not play any role in the word problem.

Our goal in this work is to propose an alternate representation for 2-cells,
making it possible to decide whether two expressions of 2-cells are equivalent
under these axioms.

3 Translation to 2-categories

Double categories can be seen as a generalization of 2-categories, as a 2-category
is a double category where all vertical morphisms are identities. Given the
inherent duality in double categories, a 2-category can also be seen as a double
category with identity horizontal morphisms.

In this section, we show how a free double category can conversely give rise
to a free 2-category. Our goal is to reuse known algorithms for the word problem
in 2-categories [Delpeuch and Vicary, 2018] for double categories. To that end
we use the string diagram calculus for 2-categories [Selinger, 2011].

Definition 4. Given a double signature S = (A,H, V, C), we define the 2-
category S2 as the free 2-category generated by:

• objects a ∈ A;

• 1-morphisms h : domh → codh for h ∈ H and vop : cod v → dom v for
v ∈ H;

• 2-morphisms α : domhα ◦ (domvα)op → (codvα)op ◦ codhα

Note that the vertical generators are reversed in the 2-category, making it pos-
sible to compose the horizontal and vertical domains together, and similarly for
the codomain.

Definition 5. Let φ be a 2-cell expression in Sd. We inductively define its
translation t(φ) as a morphism in S2(domhφ◦ (domv φ)op, (codv φ)op ◦ codhφ):
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α 7→ α

generator

µ ν 7→

µ

ν

horizontal composition

ν

µ

7→

µ

ν

vertical composition

7→

horizontal identity

7→

vertical identity

Lemma 1. The translation t respects the axioms of double categories, i.e. it
extends to a map from 2-cells in Sd to 2-cells in S2.

Proof. One can check that unitality and associativity are respected. The ex-
change law in double categories translates to the exchange law in 2-categories:

µ ν

α β

7→7→

≃

µ

α

ν

βµ

α

ν

β

Our goal is to show the converse: if the translations of two expressions in Sd

are equivalent as morphisms in S2, then so are their antecedents in Sd. To do so,
we need to construct a reverse translation, from diagrams in the free 2-category
to diagrams in the free double category.
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4 Partial tilings

To provide an inverse to the translation t, let us first introduce a necessary
condition on a diagram in S2 to be in the image of t.

Definition 6. A diagram φ ∈ S2 is admissible if its domain is of the form
vop;h and its codomain is of the form h′; v′op.

For all ψ ∈ Sd, t(ψ) is admissible. Conversely, for all admissible φ ∈ S2, we
want to construct a corresponding tiling. To do so, we introduce the notion of
partial tiling as an incomplete diagram in the free double category.

Definition 7. Let n ≥ 1, and h, h1, . . . , hn ∈ H∗ and v, v1, . . . , vn ∈ V ∗.
Assume that hi is not an identity for i > 1 and vi is not an identity for i < n.

A partial tiling of type h, v → h1, v1, . . . , hn, vn is a subdivision of the
following shape into rectangles:

v

h

vn
hn

vn−1
hn−1

h1
v1

h2
v2

. .
.

Each of the rectangles in the subdivision is attributed a generator α ∈ C or a
vertical or horizontal identity, such that the horizontal and vertical domains and
codomains match on each edge.

We think of a partial tiling as some upper-left corner of a 2-cell in a double
category. We will therefore draw partial tilings just like string diagrams for
double categories, as in Figure 3.

Definition 8. Two partial tilings are equivalent when they can be related by
a series of applications of these rules (where α can be an identity itself):

α ≃ α ≃ α

α

≃ α ≃

α

as well as continuous translations of horizontal or vertical boundaries in the
subdivision. We denote this equivalence by ≃.
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α

β

δ

ν

µ

γ

α

β

δ
ν

µ

γ

Figure 3: Examples of partial tilings

For instance, the two partial tilings in Figure 3 are equivalent.
In the special case where n = 2, h1 and v2 are identities and h = h2,

v = v2, and assuming domh = dom v, there is an empty partial tiling of type
h, v → 1cod v, v, h, 1codh:

Another special case are partial tilings of type h, v → h1, v1 which have a
rectangular shape. In this case, we can interpret them as 2-cells, but only if
they are binary composable.

Lemma 2. A partial tiling of type h, v → h1, v1 is binary composable if it
can be obtained by repeated application of the horizontal and vertical composition
from generators. In this case, it represents a 2-cell in Sd, and its meaning is
invariant under equivalence of partial tilings.

Proof. If a diagram is binary composable then by the general associativity result
of Dawson and Pare [1993], it can be interpreted as a 2-cell in Sd which does not
depend on the order of composition chosen. Then, equivalences of partial tilings
correspond to unitality of identities when interpreted in a binary composable
diagram, so the 2-cell is invariant under these equivalences.

Definition 9. Let h be an horizontal morphism in Sd. It can be uniquely
decomposed as a composition of generators h = h1◦· · ·◦hk. We define the length
of h as |h| = k. Let 0 ≤ i < k and 1 ≤ j < k. We say that h′ = hi+1 ◦ · · · ◦ hj
is a factor at index i of h. Similar notions are defined for vertical morphisms.

For instance, the factors at index 0 of a morphism h are its prefixes.

10



(a) p = (0, 0, 0) (b) p = (0, i, 0)
(c) p = (n, 0, 0) (d) p = (n, 0, i)

(e) p = (k, 0, 0) (f) p = (k, 0, i) (g) p = (k, i, 0)

Figure 4: Possible gluing positions. When the second or third component of the
position is not null, an identity cell is added.

Definition 10. Let m be a partial tiling of type h, v → h1, v1, . . . , hn, vn and
let α : h′, v′ → h′′, v′′ be a generator. A gluing position of α on m is one of
the following:

• if h′ is a prefix of h1, then (0, 0, 0) is a gluing position;

• if h′ is a factor of h1 at index i > 0 and v′ is an identity, then (0, i, 0) is
a gluing position;

• if v′ is a prefix of vn, then (n, 0, 0) is a gluing position;

• if v′ is a factor of vn at index i > 0 and h′ is an identity, then (n, 0, i) is
a gluing position;

Furthermore, for all 1 ≤ k < n:

• if v′ is a prefix of vk and h′ is a prefix of hk+1, then (k, 0, 0) is a gluing
position;

• if v′ is a factor of vk at index i and h′ is an identity, then (k, 0, i) is a
gluing position;

• if h′ is a factor of hk+1 at index i and v′ is an identity, then (k, i, 0) is a
gluing position.

For each gluing position p we define the gluing of α to m, denoted by m⋆pα, by
the partial tiling obtained by adjoining α at the designated position, and adding
any necessary identity to satisfy the condition of Definition 7.

Figure 4 shows all the possible gluing positions. Figure 5 shows how a
generator can be glued at multiple positions on a partial tiling and how identities
can be used to ensure that the resulting arrangement has non-identity inner
boundaries.
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m =

β

δ

α = α

m ⋆(1,0,0) α =

β α

δ

m ⋆(2,0,0) α =

β

δ α

Figure 5: Example of gluings of a generator on a partial tiling

Definition 11. Let φ be a diagram in the free 2-category S2. We assume that
the domain of φ is of the form vop;h with v and h paths of generators from S.

Let l ∈ N be a level in φ and h1; v
op

1 ; . . . ;hn; v
op

n be the type of the diagram at
this height, where v1 and hn can possibly be identities unlike the others elements
of the sequence.

We associate to this data a partial tiling pk(φ) : h, v → h1, v1, . . . , hn, vn, by
induction on k. If k = 0, pk(φ) is the empty partial tiling of type v, h→ 1, v, h, 1.
Otherwise, let α be the generator between levels k − 1 and k. We define pk(φ)
as the gluing of α on pk−1(φ) at the position indicated by the connection of α
to the level k − 1 of φ.

Finally we define p(φ) as pf (φ) for f the final level of φ.

The construction relies on the following two lemmas:

Lemma 3. Let α be the generator between slices k and k + 1 in φ, a diagram
in S2. If α has at least one input wire, this determines a unique gluing position
g of α on pk(φ).

Proof. Each wire crossing level k in φ corresponds to an open wire on the bound-
ary of pk(φ), either in a vertical or horizontal boundary depending on the colour
of the wire.

Let vop;h be the domain of α.
By assumption, at least one of v, h is not an identity. Assume first that v

is not an identity. As no horizontal inner boundaries of pk(φ) are identities, as
required by Definition 7, any contiguous sequence of red wires in φ corresponds
to a contiguous sequence of wires on some vertical boundary vi of pk(φ).

Let j be such that v is a factor at index j in vi. One can then check that
(i, 0, j) is a valid gluing position for α on pk(φ).

Similarly, if h is not an identity, then the corresponding wires in φ determine
a unique occurrence of h in a vertical boundary hi of pk(φ), and by denoting by
j the index of h in hi, this determines the gluing position (i− 1, j, 0).

Lemma 4. Let again α be the generator between slices h and h + 1 in φ, a
diagram in S2. If α has no input wire, meaning that its domain is the identity,
then this determines either one or two gluing positions of α on ph(φ). If there
are two such positions l, l′ then ph(φ) ⋆l α ≃ ph(φ) ⋆l′ α.

12



β

α

≃

β

α

≃

β

α

β ⋆(0,1,0) α = = β ⋆(1,0,1) α

Figure 6: Two equivalent gluing positions in Lemma 4

Proof. Let h1; v
op

1 ; . . . ;hn; v
op

n be the type of the diagram at height h. Again,
each wire in this sequence corresponds to an open wire on the boundary of pk(φ).
The wires passing to the left of α in φ determine a position in this sequence
where the generator α is inserted. The gluing positions depend on this position.

If α is bordered by two horizontal wires on each side (respectively two vertical
wires), this determines a unique gluing position (k, i, 0) (respectively (k, 0, i)) as
in the previous lemma. Similarly, if α neighbours a vertical wire on its left and
a horizontal wire on its right, this determines a unique gluing position (k, 0, 0)
as in the previous lemma.

The remaining cases are when α neighbours a horizontal wire on its left and
a vertical wire on its right, when α does not have any wire on its left and a
vertical one on its right, when it has a horizontal wire on its left and none on
its right, or when there are no wires neither on the left or the right of α. In this
case this determines two gluing positions l = (k, i, 0) and l′ = (k + 1, 0, j), and
Figure 6 shows how ph(φ) ⋆l α ≃ ph(φ) ⋆l′ α in this case.

Lemma 5. For all 2-cell diagrams µ, ν ∈ S2 such that
µ

ν
is defined,

p(
µ

ν
) ≃ p(µ) p(ν) .

Similarly, if
µ

ν
is defined, then p(

µ

ν
) ≃

p(ν)

p(µ)

.

Proof. By duality let us prove the result for the first case, horizontal composi-

tion. Let φ =
µ

ν
. Let h be the level between µ and ν in φ.

Assume first that the red edge connecting µ and ν is not empty (it is not

an identity vertical morphism). Then ph(φ) = p(µ) and p(φ) is obtained

from ph(φ) by gluing on it the generators in ν. Since the vertical codomain of
µ passes to the left of ν, these generators are glued on positions (k, i, j) with
k > 0. Performing these gluings on an empty diagram gives p(ν), so p(φ) is
equivalent to the required double diagram.

If there is no red edge connecting µ to ν then ph(φ) = p(µ) and

p(φ) is obtained from ph(φ) by gluing the generators in ν on the second part

13



h = 0

h = 1

h = 2

h = 3

h = 4

α

β

γ

δ

p0(φ) =

p1(φ) =

α

p2(φ) =

α

β

p3(φ) =

α

β

γ

p4(φ) =

α

β

γ

δ

Figure 7: Inductive construction of p(φ)
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of its vertical codomain, so it can again be rewritten into the required form by
unitality.

Lemma 6. For any 2-cell diagram φ ∈ Sd, p(t(φ)) ≃ φ.

Proof. By induction on φ. If φ is a generator or the identity, the result holds.
If φ is a horizontal or vertical composition, then we use Lemma 5 and the

induction hypothesis of the composed diagrams:

p(t( µ ν )) = p(
t(µ)

t(ν)

) ≃ p(t(µ)) p(t(ν)) ≃ µ ν

Lemma 7. Let φ, φ′ be admissible diagrams in S2 with φ ∼ φ′. Then p(φ) ≃
p(φ′).

Proof. By induction we can assume that φ and φ′ are related by a single ex-
change, swapping the generators between levels h − 1, h and h + 1. Let α be
the generator between levels h − 1 and h and β the one between h and h + 1.
It suffices to check that ph−1(φ) ⋆l α ⋆l′ β ≃ ph−1(φ) ⋆m β ⋆m′ α where l, l′ are
the gluing positions for the generators in φ and m,m′ are their counterparts
in φ′. By a tedious case analysis one can check that because the generators at
these slices can be exchanged, this ensures that the induced gluing positions are
disjoint, such that the equivalence above either holds trivially (the partial tilings
being syntactically equal) or via equivalences analogous to those of Figure 6.

5 Word problem

We can use the translation defined in the previous section to solve the word
problem for double categories:

Theorem 1. Let S be a double signature. The word problem for 2-cells in
the free double category Sd can be solved in O(ve), where v is the number of
generators in the expressions and e the number of connecting edges between
them.

Proof. Given two diagrams φ, φ′ in Sd, we can compute their translation t(φ), t(φ′)
in linear time. Then, we can check if these diagrams are equivalent as 2-cells in
S2 using the algorithm of Delpeuch and Vicary [2018], in O(ve). As p is faithful
(Lemma 7), this determines if φ and φ′ are equivalent in Sd.

6 Translating the pinwheel

Interestingly, our translation p from the free 2-category to the free double cat-
egory works for all admissible diagrams, and admissibility is a simple condition
on the domain and codomain. We are not requiring any global condition such
as binary composability on the 2-cell. As a consequence, this translation p can
produce tilings which are not binary composable.
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7→ γ

α

β

δ

ǫ

α

β

γ

δ

ǫ

It is therefore tempting to extend the forward translation t to double cat-
egory diagrams which are not binary composable. By the characterization of
Dawson [1995] of non-composable diagrams, it is sufficient to translate the two
pinwheels: by induction, all diagrams could then be interpreted. However, there
could potentially be multiple ways to decompose a diagram as a tree of binary
and pinwheel composites, so to define t properly we would need an equiva-
lent of the general associativity result of Dawson and Pare [1993] with pinwheel
composition. That would only be possible given an appropriate notion of equiv-
alence, which would amount to developing a notion of “double category with
pinwheels”. This does not strike us as a particularly useful notion as it would
be rather complicated, with four different composition operators and many ax-
ioms to relate their applications, only to represent planar systems. What this
really means is that free 2-categories already provide the appropriate notion of
“free double category with pinwheel composites”, in the sense that they capture
the desired combinatorics with a much simpler axiomatization. This fact has
been observed at an intuitive level by Reutter and Vicary [2016] who modeled
biunitary connections in a 2-category rather than a double category, by using
the same rotation. They noticed that biunitaries forming a pinwheel pattern
could be composed into a new biunitary. As double categories are not equipped
with such a composition, a 2-categorical model therefore provides a more useful
representation.
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