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Abstract: The photoluminescence properties of the phosphor (Sr,Mg)3(PO4),:Sn** were
investigated for luminescence thermometry in fluids. The luminescence emission intensity at
300 K is on the order of 10° photons per particle and the lifetime is 26 us. With increasing
temperature, the wide emission band exhibits a pronounced blue shift which can be exploited
for temperature imaging using a two-colour ratiometric approach. The measured temperature
sensitivity in an imaging configuration is 0.6%/K at 300 K. The T5¢ quenching temperature is 650
K, similar to the phosphor BaMgAl;o0,7:Eu”*, but the estimated temperature sensitivity at 700 K
is a factor 7 higher (0.36%/K). Moreover, the excitation laser fluence has a negligible effect on the
measured temperature (0.6 K for a 10% change in the fluence), a five-to-tenfold improvement over
phosphors previously investigated for fluid thermometry. The phosphor (Sr,Mg)3(POy),:Sn**
therefore offers significant improvements for thermometry applications in turbulent flows in the
300-900 K range.
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1. Introduction

Fluid temperature measurements are key to furthering our understanding of a variety of
phenomena involving heat transfer, buoyancy, phase changes or chemical reactions found in
systems ranging from industrial energy devices such as gas turbines to natural processes, such
as thermal convection. Over the past 10 years, thermographic phosphor particles, which are
temperature-sensitive luminescent materials, have experienced a rise in use as tracers for point
and 2-D measurements in fluids (see review article [1]). Most phosphors do not participate
in chemical reactions, many host compounds (e.g. oxides) have a high melting point, the
luminescence properties are often insensitive to the gas composition and pressure, and they
can be used in both liquid and gas flows, making phosphor particles very suitable as a tracer
material. The same particles can also be used for simultaneous velocity measurements using
particle-based velocimetry approaches to obtain combined temperature-velocity measurements,
such as the Thermographic Laser Doppler Velocimetry or [2] or Thermographic Particle Image
Velocimetry [3] approaches. Phosphors have been used in many applications, with examples
including liquid film absorbers [4], internal combustion engines [5] and gas turbine film cooling
flows [6].

For a particular application the choice of phosphor particles plays a central role in the
precision and accuracy of the optical thermometer. The critical luminescence properties are:
a) the luminescence emission intensity for the conditions of the experiment, e.g. particle
number density in the fluid, excitation fluence and temperature range; b) the luminescence
lifetime, which imposes a limit on the minimum measurement duration; and c) depending on the
thermometry approach, the sensitivity of the luminescence emission lifetime or emission spectrum
to temperature. Fortunately a huge variety of potential compounds exists and among these the
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luminescence lifetime and temperature sensitivity of more than hundred materials are known [7].
That said, only a dozen phosphors have been used in the context of fluid thermometry [1]. Those
covered a wide range of lifetimes and temperature sensitivities. Recently, the emission of six of
those phosphors were compared using dispersed particle methods, finding that the luminescence
emission intensity of ZnO, BaMgAll()On(BAM):Eu2+ and Mg_f;FGeO4(MFG):Mn4+ were similar
and on the order of 10° photons per particle at an excitation fluence of a 20 mJ/cm? [8]. For
Y3Als012(YAG):Pr**, YAG:Dy?* and La,0,S:Eu®*, the emission intensities of the emission
bands used for thermometry were found to be several orders of magnitude lower than this, even
for significantly higher laser fluences. The luminescence lifetimes of ZnO and BAM:Eu?* is 1
us or shorter, very suitable for measurements in fast turbulent flows, while that of MFG:Mn** is
on the order of a few ms which rules out its use in all but very slow fluid flows.

ZnO is rapidly quenched with increasing temperature, with a Tsg, the temperature at which
the emission intensity is 50% of its room temperature value, of 400 K. BAM:Eu?* can be used
for thermometry at higher temperatures with a Tso of 700 K. For both phosphors, the shift and
broadening of their emission bands with temperature can be exploited for temperature imaging
using a two-colour intensity ratio approach. At seeding densities of 2x10!! particles/m?, a
temperature precision of 3 and 10 K could be achieved around room temperature for ZnO and
BAM:Eu?* respectively [9]. The higher precision achieved with ZnO is afforded by the more
pronounced shift of the emission band with temperature. However, ZnO particles exhibit an
unfortunate and strong cross sensitivity to the excitation fluence, amounting to a 6 K error per
10% change in the laser fluence. This can often be corrected for, and a discussion of laser fluence
corrections and the effect of the fluence cross-dependency on the measurement accuracy can
be found in Refs. [1,9]. However, ZnO definitely cannot be used in situations where unsteady
refractive index inhomogeneities are present, which causes so-called striping in the measured
temperature field.

There is a clear motivation to find alternative phosphors with 1) a similar or even higher signal
level and a delayed onset of thermal quenching; 2) a higher temperature sensitivity; 3) a negligible
cross-sensitivity to the laser fluence. This article describes the investigation of another phosphor
material, strontium magnesium orthophosphate doped with divalent tin: (Sr,Mg); (PO4),:Sn?*,
While to our knowledge, tin-activated phosphors have not been exploited for thermometry before,
(S1,Mg)3(PO4),:Sn>* has been a prominent phosphor material used in the lighting industry and
so first some available literature data is reviewed to rationalise our selection.

(Sr,Mg)3(PO4),:Sn** was extensively used in the 1960’s as the red component in fluorescent
and high-pressure mercury vapour lamps, since it is efficiently excited by both low and high
pressure mercury vapour emissions. Though it was later substituted in fluorescent lamps by the
narrow-band YVO4:Eu?*, which presents better colour characteristics, (Sr,Mg)3 (PO4)2:Sn** is
still in use today in high colour rendering lamps due to its broad emission band. The location
and width of the emission band observed in Sn>*-activated compounds is strongly dependent
on the host crystal phase [10]. (Sr,Mg)3(PO4)2:Sn2+ has a broad emission band centered in the
red region (600-650 nm) at room temperature, which is only observed in Sr3(POy4); systems
when Sr is partially replaced by either Mg, Ca, Zn, Al or Cd to form a crystal phase similar to
that of 8-CazPOy4 [11]. The solid solution with a substitution of 11 mol % of Mg and a dopant
concentration (Sn to 2P ratio) of 2 mol % was considered optimal in terms of quantum efficiency
and temperature stability by Sarver et al. [12]. The red emission band has a quantum efficiency
in the 90-100% range of that of the reference phosphor MgWO, [12], which itself is reported to
have an efficiency of 85% [13]. The luminescence transitions involved in the emission are very
different from those found in the two phosphors mentioned above. In ZnO, interband transitions
are responsible for the exploited emission band and in BAM:Eu 4f5d — 4f transitions of the Eu>*
ion are used. In (Sr,Mg)3(PO4),:Sn**, the Sn** ion has a 5s? electronic configuration, and the
transition responsible for the red emission band is of the 5s5p — Ss? type. Decay times in the



order of several microseconds have been reported in tin-doped coumpounds [14,15], which would
be suitable for fluid thermometry. The excitation spectrum is a broad band with a maximum at
260 nm, with the intensity decreasing to 5% at 355 nm (the third Nd:YAG harmonic which is
convenient for excitation) [16].

Some information is known about the spectral changes of the luminescence emission with
temperature because this colour change is seen as detrimental to performance in colour-rendering
lamps [16]. The main emission band shifts and widens towards the blue spectral region with
increasing temperature. A small emission band representing 5% of the energy is also present
at 400 nm at room temperature [12]. The phosphor exhibits relatively favourable thermal
quenching characteristics. The Tsy temperature, the temperature at which the emission intensity
has decreased by 50% with respect to the room temperature value, appears to be between 600
and 700 K depending on the activator concentration [16]. Thermal stability was also studied.
Exposures of the phosphor in air for 30 mins at 630°C, and 730°C, led to a reduction in room
temperature brightness of 10% and 57%, respectively [12]. The thermal stability is similar in
terms of the temperature/heat treatment duration space to that of BAM:Eu”* [17, 18]. Note that
this is not a concern for short residence times of the particles at high temperatures when used in
flows. BAM:Eu”* was found to have unchanged luminescence properties after exposure to the
high-temperature reaction zones of a non-premixed hydrogen flame (0.1 s above 1700 K) [19].

The high quantum efficiency, the prounounced shift of the emission spectrum with temperature
and the favourable thermal quenching characteristics reported for this material together with
the short lifetime of the 5s5p — 5s> emission in Sn>*-doped compounds form an attractive
combination of properties as a thermometry sensor. In this paper, the luminescence properties
of micron-size (Sr,Mg)3(PO4),:Sn>* particles (referred to in the following as SMP:Sn”*) are
investigated for use as temperature sensors in fluids. The luminescence lifetime is measured, and
using liquid suspensions and particle counting, the emission intensity per particle is quantified
using pulsed laser excitation. The temperature sensitivity is evaluated in an imaging configuration.
Cross-sensitivities to excitation fluence and particle number density are also probed. Emission
spectra are recorded over the 300-900 K to assess the useful temperature sensing range. The
overall thermometric performance of this phosphor is finally compared to that of ZnO and
BAM:Eu?*.

2. Experimental methods

2.1. Material characterisation

A commercial SMP:Sn”* powder supplied by OSRAM (SV 253) was investigated in this study.
The median volume equivalent sphere diameter was about 10 um as specified by the manufacturer.
The density of the phosphor is 3.9 g/cm?. This powder size is unsuitable for flow tracing as it
has response times on the order of several milliseconds in air [3]. The powder was ground and
de-agglomerated to obtain a finer grade. The resulting size distribution was determined by a
Coulter counter (Beckman Multisizer 3), with 300 size steps of 100 nm, starting from 1um. The
particles were imaged using a scanning electron microscope (SEM) and the composition was
evaluated using an energy-dispersive X-ray spectroscopy system coupled into the SEM.

The heat capacity is an important quantity for applications of phosphor particles for thermometry
in fluids, as the response time of a particle to fluid temperature changes scales linearly with the
heat capacity [1]. Differential scanning calorimetry of the powder was performed. A small
sample of the powder (26 mg) was heated at a rate of 20 K/min from 300 K to 1400 K. Al,O3
was used as a reference sample. The heating was repeated three times. To study the thermal
stability, a larger sample of the powder was heated in a tube furnace at the same rate up to 900 K,
and its luminescence properties (emission intensity and spectrum) at room temperature were
analysed and compared to those of the untreated sample.
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Fig. 1: Setup for two colour imaging system including particle counting and 2-colour intensity
ratio imaging system. The abbreviations used in the sketch are: EM-energy monitor, L-lens,
M-mirror, cv-concave, cx-convex, cyl-cylindrical. Note that counting and two colour detection
were not performed simultaneously

2.2. Liquid dispersion and particle counting

To determine the emission intensity of phosphor particles on a per particle basis as well as
to determine cross-sensitivity to parameters such as the laser fluence or the seeding density,
phosphor particles must be characterised in the dispersed form. This is for two reasons. The first
is to avoid effects which are far more pronounced in the bulk powder form than in the dispersed
form, such as heating and degradation of the powder under repeated illumination, amplified
spontaneous emission, re-absorption of luminescence emission, and multiple scattering, as
discussed in Refs. [20] and [1]. The second reason is that a comparison of luminescence emission
intensities from powder samples may not bear any relation to the relative emission intensities
measured from dispersed particles [8], which are the data relevant to fluid thermometry.

Therefore phosphor-liquid dispersions were prepared according to the method outlined in
Ref. [21]. A set mass of particles were dispersed in deionised water using an ultrasonic
homogeniser and dilution was used to obtain mass loads in the range of 1 to 20 mg/L. The solution
was contained in a 28 mL fused silica cuvette containing a stirring bar which was placed on a
magnetic stirrer and heater plate. During the measurements, the solution was stirred continuously.
The temperature of the solution was monitored by a 500 um diameter type K thermocouple.

Due to possible particle-wall attraction it is necessary to probe the quantity of dispersed
particles independently of the mass load. As shown in Fig. 1, a particle counting system [20]
consisting of a 170 um-thick light sheet propagating through the cuvette and a camera equipped
with a f=200 mm Nikon lens was used to acquire high-resolution Mie scattering images, from
which the number density of particles in the probe volume can be determined. Further details of
the setup are given in Ref. [8].

2.3. Spectroscopy

The luminescence decay curve of SMP:Sn”* bulk powder was measured using the unfocused
beam of a frequency quadrupled pulsed Nd: YAG laser (266 nm) with a pulse duration of 10 ns,
and detected by a non-amplified photodiode (Thorlabs DET-10 A), equipped with a spherical
convex lens. A long pass colour glass filter (WG295) was placed in front of the detector to reject
laser light at 266 nm. The luminescence lifetime was also probed from liquid dispersion, using a
photomultiplier tube for comparison (Hamamatsu R955HA).

In order to determine the emission intensity per particle, emission spectra of liquid-particle
suspensions were acquired using an imaging spectrometer (Acton Research SP300i, =500 mm,



300 grooves/mm) combined with an interline CCD camera (Imager Pro-X 1200x1600 pixels,
7.4 um pixel size). Unless otherwise mentioned, the width of the entrance slit was 350 um
corresponding to approximately 3.5 nm in spectral resolution. For excitation of the particles
in suspension, a 2.1 mm wide and 4.3 mm high laser beam was formed in the center of the
cuvette from the output of the Nd: YAG laser at either 266 or 355 nm using a single cylindrical
convex lens (f=50 mm). Based on the dimensions of the probe volume, the seeding density, and
the calibration of the detection system throughput, the spectrally resolved emission intensity
(photons/particle/pulse/nm) was determined [8].

To measure intensity on a per particle basis, the following steps were followed: 1) a suspension
was prepared for a set mass load; 2) the seeding density in the suspensions was measured; 3) the
luminescence emission of the particles was probed; 4) the seeding density was recounted. It was
found that the seeding density varied by less than 5% between steps 2 and 4. Therefore it was not
necessary to count particles and probe the luminescence simultaneously, which simplifies the
experimental setup and avoids potential cross-talk.

To evaluate the phosphor thermometric performance over a larger temperature range, a powder
sample was placed in the tube furnace and excited by an unfocused laser beam at a fluence of
1 mJ/cm?. Luminescence emission spectra were recorded between 300 K and 900 K in 100 K
steps. The slit width was 100 um corresponding to a spectral resolution of 1 nm. The spectral
resolution was verified from the width of the emission lines of a low pressure mercury lamp.
To evaluate thermal quenching, the spectral intensity was integrated at each temperature over
the whole emission band. Previous comparisons between the thermal quenching curve obtained
from particles dispersed in heated jet and from powder samples in optically accessible furnace
showed good agreement [1], so furnace measurements were prefered here for experimental
simplicity. Decay time measurements were also performed over this temperature range, using the
non-amplified photodiode.

2.4. Two-colour imaging system

In order to demonstrate the suitability of SMP:Sn** for temperature imaging in fluids the liquid
suspensions were also probed using a two colour detection system. The cuvette was illuminated
with a laser light sheet at 266 nm (7x1 mm) as shown in Fig. 1. Two cameras (Imager sCMOS,
2560x2160 pixels, 6.5 um pixel size) equipped with f = 50 mm Nikon lenses at an f-stop of
1.4 were placed at 90° from one another and a spectrally flat beam-splitter was used to form
images of the same particles on both sensors. To exploit the temperature dependence of the
emission spectrum in two dimensions, a bandpass filter with a central wavelength of 510 nm
and a bandwidth of 84 nm (Edmund Optics 84113) was mounted on one camera, and a 645 nm
long-pass coloured glass filter (Schott RG645) on the other.

3. Results

3.1.  Particle size, morphology and composition

Particle sizes of the processed powder are summarised in Table 1. Note that only particles which
have a sphere equivalent volume diameter larger than a micron could be sampled, which result in
a bias towards larger sizes. Both the distribution by number and by volume are given. The size is
suitable for flow tracing, with a 95% response time of a 2 um spherical particle equal to 70 us in
air at room temperature.

The mass load of particles and the particle number density were related by counting suspensions
prepared with two different mass loads, which were 0.9 ug/mL, and 18 ug/mL. The ratio between
measured mass load and measured number density was found to be constant to within 10%,
corresponding to 1.9 +0.1 x10° particles/ug. This is in good agreement with the distribution
measured using the Coulter counter distribution (1.0 x 103 particles/ug). The difference can be
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Fig. 2: Scanning electron microscope of the powder before and after grinding

attributed to the fact that particles smaller than 1 um are counted by the particle counting system
but not by the Coulter counter, resulting in a larger particle counts in the optical method.

The shape of a particle is also important for its tracing ability. For the same equivalent sphere
volume diameter, non-spherical particles have a faster characteristic response time for both
temperature and velocity tracing, due to their larger area to volume ratio. For further discussion,
see Ref. [1] (Section 5.2). Scanning electron microscope images of the powder before and after
grinding are shown in Fig. 2. The grinding and deagglomeration process has broken the large
particles into many small particles with sharp edges. A large number of submicron particles can
also be seen in the ground powder. The particles are non-spherical, of a shape similar to that of 2
pum BAM Eu [22], which were also obtained from grinding larger particles.

A Sn to P atomic ratio of 2% was determined from EDX, which correspond to x=0.04 in the
formula (Sr,Mg)3 (PO4)2:Sn)2(Jr used in [16]. The Mg to Sr atomic fraction ratio was found to be
9.1%.

Table 1: Size distribution parameters of the powder after grinding and de-agglomeration
dmean (ﬂm) dmediun (ﬂl’l’l) le (ﬂm) d90(/1m)

By volume 2.62 1.94 1.25 3.34
By number 1.52 1.40 1.06 2.12

3.2. Heat capacity and thermal stability

The results of the DSC measurements are shown in Fig. 3. During the first heating run features
in the trace were observed from 400 and 500 K, and from 700 to 900 K. These features were not
observed in subsequent heating runs. These might be linked with the evaporation of the powder
moisture and/or exothermic reactions of residual fluxes from the synthesis process, especially
after the grinding operation. To study whether the luminescence properties were altered during
the first heating cycle, the emission spectrum of a sample that underwent the same heat treatment
in a tube furnace was compared to that of an untreated sample. No differences in the shape of the
emission spectrum could be observed, and the emission intensity was within the repeatability of
the measurements (20%). It can be concluded that the changes observed in the DSC for the first
heating have a negligible influence on the luminescence properties of the phosphor.

The heat capacity was extracted from the second heating curve. It is seen to increase linearly
from 800 to 1600 J/kg/K in the range 400 to 1400 K. Extrapolation to room temperature yields a
value of 700 J/kg/K. The volumetric heat capacity of this phosphor, SMP:Sn’* is 3.1 J/K/cm?,
similar to that used in the heat transfer analysis of Ref. [3] (2.8 J/K/em?).
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3.3.  Room temperature luminescence lifetime and emission spectrum

Emission spectra obtained from dispersed particles at 23 and 62°C are shown on Fig. 4. At
300 K the emission consists of a wide band centered at 614 nm with a full width at half maximum

of approximately 125 nm.

The recorded decay curve following pulsed excitation is shown in Fig. 5. The mono-exponential
decay fitted using a Levenberg Marquardt algorithm to the data between 5 and 50 us after the
laser pulse is also shown. The 1/e lifetime is 26.3 us. As shown in the inset curve for early times
(t < 1us), there may be some faster signals with a lifetime of <100 ns, but those have a negligible
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impact in terms of cumulated time-integrated intensity. The lifetime measured with a PMT in the
liquid suspensions was found to be in the range of 24-27 us, matching the lifetime in the powder
state, which rules out quenching of the luminescence by energy transfer with the solvent (here,
water), as this can be the case for nanoparticles [23].

3.4. Emission intensity per particle

By integrating over the whole quantitative spectrum in Fig. 4, the total number of photons
emitted per particle is 2.3x10° photons using 266 nm excitation at a fluence of 20 mJ/cm?.

The dependence of the emission intensity per particle on the excitation fluence is important to
predict the detected signal level in different experimental configurations, as well as to estimate
the effect of non-linearity on the broadening of the laser sheet thickness (see Ref. [1]). The
dependence of the emission intensity of the SMP:Sn”* particles on the fluence between 10 and
50 mJ/cm? is displayed on Fig. 6. A power law fit is used to examine the departure from a linear
behaviour. In the investigated range, the dependence on the laser fluence is sublinear, with a 0.48
exponent. Sublinear dependence were also observed for ZnO [9], and BAM:Eu?* [20,22,24].

The emission intensity per particle under 355 nm excitation was also examined. Due to the
weaker signal, a higher excitation fluence of 430 mJ/cm? was necessary. The emission intensity
per particle at this fluence was found to be 7.4 x10* photons, a fraction (3.5%) of the emission
intensity for 266 nm excitation using a fluence 20 times higher. In conclusion, using a frequency
tripled Nd: YAG laser for excitation does not seem to be a viable option for fluid thermometry
experiments. Interestingly, the difference in emission intensity between 355 nm and 266 nm
excitation is far more pronounced in these measurements on dispersed particles than what the
photoluminescence excitation spectrum, which is typically obtained from thick powder samples,
indicates. This may be attributed to differences in optical thicknesses between the two states,
which are discussed in [8].

3.5. Temperature dependence in liquid dispersions

The emission spectra recorded at 23°C and 62°C are displayed in Fig. 4. As shown, the spectrum
shifts to the lower wavelength range and broadens with increasing temperature, which is in
agreement with the observation of Yen et al. [16]. The same behaviour was also observed for
YPO,:Sb3*, and Sb3* and Sn2* share the same electronic structure (5s%) [25]. The broadening
of the emission band with temperature is a phenomenon which is well described by quantum



mechanical oscillators and which can be quantified by the Hyang-Rhys parameter [26]. The
reasons for the shift of the emission peak toward higher energies are not entirely clear to the
authors and potential explanations involve higher order coupling of the ion-lattice interaction
model [26] or the thermal distribution within the emitting state 3Py, which is split due to the
Jahn-Teller interaction [10,27].

Using the two camera system intensity ratio images were obtained at different liquid tempera-
tures between 25 and 65°C at an excitation fluence of 20 mJ/cm?. Spatially averaged intensity
ratios are plotted in Fig. 7. From these results, the temperature was fitted as a second-order
polynomial function of the intensity ratio (i.e. T = aj¢” + ap + a3 where T and ¢ are the
temperature and intensity ratio, respectively). By inverting the polynomial, the temperature
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sensitivity expressed as }DZ—T was calculated, and plotted on Fig. 7. The resulting ratio sensitivity
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3.6. Effect of the excitation fluence on the intensity ratio

Intensity ratio images were acquired from suspensions of SMP:Sn>* at room temperature under
varying excitation fluence, and converted to temperature based on the calibration curve of Fig. 7
performed at 15 mJ/cm?. The difference between the temperature indicated by the phosphor and
that indicated by the thermocouple is plotted in Fig. 8 for fluences varying between 10 and 50
mJ/ecm?. An increase in the excitation fluence leads to an increase in the indicated temperature.
The same effect was observed with ZnO and BAM:Eu?*, and can be attributed to a possible
combination of non-linear optical effects and laser-induced heating. The magnitude of this
cross sensitivity can be derived from the exponential fit as % 3—;, where F and T are the laser
fluence and indicated temperature, respectively. If the laser varies by 10% around 20 mJ/cm?,
the indicated temperature varies by less than 0.6 K for SMP:Sn?*.

3.7. Effect of the seeding density on the intensity ratio

For phosphors where the excitation and emission spectra overlap, part of the luminescence light
emitted by the phosphor particle can be re-absorbed by other particles on the optical path. This
can cause the indicated temperature to depend on the number of particles on the beam path,
therefore on the seeding density. This is not the case for SMP:Sn”* since excitation and emission
spectra are well separated. However, the broad emission band may not equally scattered by



Measurement ~ — - — - Sensitivity

. 10.6

(o) Fit

ST

[}

Q

5 25

£ st 5

= 7 S

g
©

5 oo EE

=% =)

5 )

= S ¥

3 T Z

5

5

2

= _10 . . + . 0.2

0 10 20 30 40 50

Fluence (mJ/cm 2)

Fig. 8: Indicated temperature difference as a function of excitation fluence for
(Sr,Mg)3(PO4),:Sn”* at 300 K, including exponential fit, and sensitivity derived from the
fit

particles on the beam path due to the dependence of particle Mie scattering on the wavelength
of the light, which can also cause a dependence on the number of particles on the optical path.
To investigate this possibility, a 27 ug/mL concentration solution (5.4 x 10'? particles/m?) was
prepared, and the intensity ratio measured in that solution was converted to temperature using
the calibration of Fig. 7, which was obtained for a 9 ug/mL solution (1.8 x 10'? particles/m?).
The optical path through the particle/water solution was 10 mm. A difference of only 1.2 K
was observed, which indicate a negligible effect of the particles on the optical path under these
conditions.

3.8. Measurements in optically accessible furnace in 300-900 K range

To study the performance of the phosphor for temperature measurements above 350 K, emission
spectra were recorded from a bulk powder sample placed in the optically accessible furnace under
pulsed excitation at a fluence of 1 mJ/cm?. Normalised spectra at recorded at 100 K intervals
are shown on Fig. 9. As shown the shift and broadening is continuous over the 300-900 K
temperature range. It is also interesting to observe the presence of the 400 nm emission at room
temperature which disappears at higher temperatures. Note that it is preferable for measurements
at low temperatures to choose a filter for the shorter wavelength range which does not include the
400 nm emission. Were this so, the temperature sensitivity would slightly decrease in the 300 to
400 K range, since the signal increase due to the blue shift into this filter band would be partially
offset by the disappearance of the 400 nm emission band. The transmission spectra for the filter
combination used for the ratio imaging in section 3.5 are superimposed into the emission spectra
of Fig. 9. The ratio of intensities for this combination obtained from spectral integration is shown
in Fig. 10. The ratio changes by a factor 26 between room temperature and 900 K. Here a power
law was used to fit the data, and the relative temperature sensitivity was derived by inversion of
the power law, as in section 3.5. The temperature sensitivity decreases with temperature. From
Fig. 9, we can anticipate that this drop of sensitivity would be less pronounced if the filter for the
shorter wavelength range would extend to 400 nm as to take full advantage of the blue-shift. This
would be at the cost of a slight sensitivity loss near room temperature since part of the 400 nm
emission band would be included. The choice of filter should be carefully optimised over the
temperature range of interest using a random uncertainty model which takes into account both
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temperature sensitivity and collection efficiencies as discussed in Ref. [1] (section 3.2.4).

The emission intensity measured by spectral integration of the whole emission band at each
temperature is plotted on Fig. 11. As shown, there is an initial increase in emission intensity
followed by a decrease from 500 K, which agrees with the observation made in Ref. [16] for
the same dopant concentration. The Tsy temperature can be estimated as approximately 650 K,
and at 900 K the emission intensity is 4% of the room temperature value. For comparison, the
thermal quenching curve of ZnO and BAM:Eu?* are also plotted. SMP:Sn?* and BAM:Eu?*
have very similar characteristics in this respect. The evolution of the lifetime with temperature
is plotted in Fig. 12. As expected from the quenching curve (Fig. 11), the lifetime shortens
significantly above 700 K and can be used for thermometry in this temperature range.

4. Discussion

Table 2 summarises the properties of the phosphor investigated here SMP:Sn>* to those of the
two previously characterised phosphors BAM:Eu?* and ZnO in order to guide the choice of
phosphors in specific thermometry applications. To anticipate the cost of using this phosphor in
large experiments, it is important to note that the price per kg of powder is less than 100 euros.

Unlike the two previous phosphors which could be excited at both 355 nm and 266 nm,
SMP:Sn?* particles can only be efficiently excited at 266 nm. At low repetition rates, e.g. 10 Hz,
delivering pulse energies of several mJ at 266 nm is straightforward. At kHz-rates, however, 266
nm excitation can be more complex than 355 nm excitation due to the increased absorption and
therefore thermal loading of the laser components.

For phosphor particles to be used in turbulent flows, a high emission intensity and a short
lifetime are necessary. In terms of brightness, a single SMP:Sn** particle emits a similar amount
of photons as the two other phosphors. SMP:Sn* has a longer lifetime of 26 us, which implies
that for 85 % of the total intensity to be collected, a 50 us exposure time is necessary. When using
the particles as a tracer in a flow with a velocity of 10 m/s, a displacement of 500 um would occur
during this time, which imposes a limit on the signal or spatial resolution in fast flows. However,
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in flows of moderate velocities, the lifetime and emission intensity of SMP:Sn>* are suitable for
fluid temperature measurements. In cases where short-lived fluorescence signals from windows
or fuel species are present, the relatively longer lifetime can actually be advantageous when
used in combination with a time-gating strategy. By delaying the exposure of the camera by a
microsecond relative to the laser pulse, short-lived fluorescence signals can be avoided, while the
useful signal from the phosphor is reduced by less than 3%. Details about this scheme will be
presented in [28].

SMP:Sn** has a broad emission band centered at 614 nm, which allows a more efficient
detection with non-intensified cameras compared to that of ZnO in the near-UV. The combination
of red emission and long lifetime would in principle mean that the phosphor may be more prone
to interferences from thermal radiation from hot surfaces, but considering the temperature range
of those phosphors, this is unlikely to be an issue. At 900 K in a furnace, no interference could
be detected.

In terms of thermometric performance, the temperature sensitivity measured in an imaging
configuration with SMP:Sn** is 0.6%/K, which is 2.5 times higher than that of BAM:Eu”* and
only 15% lower than that of ZnO. However the collection efficiency of the chosen filters should
also be compared, which was similar for the filter combination used in ZnO and SMP:Sn?+
experiments but substantially higher for BAM:Eu?*. To more fairly compare the performance of
the three phosphors, a random uncertainty model [22] taking into account the emission intensity
per particle, the collection efficiency of the filters and the temperature sensitivity was employed.
It was considered that a dichroic mirror would be used, as in [29], for all three phosphors to avoid
the 50% loss. An otherwise identical measurement configuration (in terms of lens collection
efficiency, seeding density, resolution and camera) was considered, which produces precision
levels similar to those measured for BAM:Eu2* in Ref [22]. The resulting numbers shown in
Table 2 serve as a comparison between phosphors. SMP:Sn* affords a similar level of precision
(4 K at 300 K) to ZnO.



Table 2: Summary of the luminescence properties of the three phosphor characterised in the

fluid phase:

Phosphor SMP:Sn** BAM:Eu** ZnO

Composition (Sr,Mg); Bap.ssMgAl10O17 | ZnO (>99% pure)
(PO4)2:Sn%, Eul’,

Volume-equivalent diameter (um) 2 2.4 1.2

Photoluminescence properties (at

300 K)

Possible Nd:YAG excitation wave- | 266 266 and 355 266 and 355

lengths (nm)

Photons per particle per pulse (at 20 | 2.3x10° 2.7x10° 3 x10°

mJ/cm? and 266 nm) [8]

Emission central wavelength (nm) 614 387 450

Full width at half maximum (nm) 124 15 50

1/e lifetime 26 us 1 us <1 ns

Temperature sensitivity

Temperature sensitivity measured | 0.6 0.24 [22] 0.7 [21]

in imaging configuration (over 20-

60°C range, %/K)

Collection efficiency of filtersused | 5% and 16 % | 30% and 21% | 5% and 15% (50%

at 300 (50% beamsplit- | (dichroic beam- | beamsplitter) [21]
ter) splitter) [22]

Predicted random uncertainty at 300 | 4.0 7.3 3.0

K in arbitrary configuration (K)

Quenching Temperature (Ts, K) 650 700 [1] 400 [21]

Cross-dependencies

Fluence (at 20 mJ/cm?) 0.6 K/10% 2 K/10% 6 K/10%

Particles on optical path No evidence No evidence No evidence

Oxygen partial pressure Not investigated No (0-200 mbar) | Not investigated

However, above 475 K, the emission intensity of ZnO has decreased by 75% compared to the

room temperature value, while for SMP:Sn?* such decrease does not occur before 750 K. Above
475 K, it is interesting to compare the performance with that of BAM:Eu”*, which presents
similar quenching characteristics. At 700 K, the sensitivity of SMP:Sn?* is still high 0.36%/K
(Fig. 10) relative to that of BAM:Eu”* which has dropped to 0.05 %/K [22]. By taking into
account both thermal quenching and sensitivity, a 4-fold improvement in precision is expected
with SMP:Sn”>* compared to BAM:Eu?* at 700 K. It is therefore clear that SMP:Sn>* offers the
best sensing performance of all three phosphors over a wide temperature range.

Finally, the measurement uncertainty is not only related to signal statistics but can also be raised



by cross-dependencies of the measured quantity on other parameters, or by interferences from
other light sources. As for the other phosphors investigated, no evidence were found of an effect
of the number density of particles on the optical path on the measured temperature [21,22,24,30].
Of particular importance is the sensitivity to the laser fluence, a parameter which can vary spatially
and/or temporally in experiments. ZnO shows high sensitivity to laser fluence fluctuations, which
means careful corrections are necessary in situations where there is a steady distribution in
fluence. In applications where the laser fluence locally fluctuates, for example in liquid convection
experiments, where strong index of refraction gradients are induced by density differences, the
resulting error dominates and cannot be corrected for. In this respect, using SMP:Sn* particles,
which exhibit a fluence sensitivity which is 10 times lower than that of ZnO, reduces this error
contribution to a negligible level in comparison with the precision.

5. Conclusion

The phosphor (Sr,Mg)3(PO4),:Sn>* was characterised for fluid thermometry and its thermometric
performance compared to that of the two previously characterised phosphors BaMgAl;0;7:Eu”*
and ZnO. The three phosphors all exhibit very different luminescence mechanisms resulting in
varied luminescence properties. In cases where the flow is not too fast (<10 m/s) and excitation
at 266 nm can be used, SMP:Sn** offers a temperature precision as good as that of ZnO at
temperatures of 300-400 K, and almost 2 times better than BAM:Eu”*. Over a larger temperature
range up to 900 K, due a combination of favourable thermal quenching characteristics and high
temperature sensitivity, SMP:Sn>* offers a very substantial progress in terms of measurement
precision, with a 4-fold decrease in random error relative to BAM:Eu?*. In addition, the
negligible dependence of SMP:Sn>* on the laser fluence is essential in situations with large
and uncontrollable excitation fluence fluctuations and is at minimum a significant advantage in
most other measurement configurations, where controlling the laser fluence or correcting the
measurements leads to lower signal levels or increased systematic error. The characterisation of
this phosphor has improved and broadened the measurement capabilities of fluid thermometry
using thermographic phosphors.
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