arXiv:1906.05937v1 [cs.LO] 13 Jun 2019

A complete language for faceted dataflow programs

Antonin Delpeuch

Department of Computer Science, University of Oxford

June 17, 2019

We present a complete categorical axiomatization of a wide class
of dataflow programs. This gives a three-dimensional diagrammatic
language for workflows, more expressive than the directed acyclic
graphs generally used for this purpose. This calls for an implemen-
tation of these representations in data transformation tools.

Introduction

In the dataflow paradigm, data processing pipelines are built out of modular
components which communicate via some channels. This is a natural archi-
tecture to build concurrent programs and has been studied in many variants,
such as Kahn process networks [Kahn, 1974], Petri nets [Petri, 1966, Kavi et al.,
1987], the LUSTRE language [Halbwachs et al., 1991] or even UNIX processes
and pipes [Walker et al., 2009]. Each of these variants comes with its own
requirements on the precise nature of these channels and operations: for in-
stance, sorting a stream requires the module to read the entire stream before
writing the first value on its output stream, which violates a requirement called
monotonicity in Kahn process networks, but is possible in UNIX. Categorical
accounts of these process theories have been developed, for instance for Kahn
process networks [Stark, 1991, Hildebrandt et al., 2004] or Petri nets [Pratt,
1991, Meseguer et al., 1992].

In this article, we give categorical semantics to programs in Extract-Transform-

Load (ETL) software. These three words refer to the three main steps of most
projects carried out with this sort of system. Typically, the user extracts data
from an existing data source such as a comma-separated values (CSV) file,
transforms it to match a desired schema (for instance by normalizing values,

Antonin Delpeuch: antonin.delpeuch@©cs.ox.ac.uk

https://orcid.org/0000-0002-8612-8827
mailto:antonin.delpeuch@cs.ox.ac.uk

removing faulty records, or joining them with other data sources), and loads
it into a more structured information system such as a relational or graph
database. In other words, ETL tools let users move data from one data model
to another. Because the original data source is typically less structured and not
as well curated as the target data store, these operations are also refered to as
data cleansing or wrangling.

ETL tools typically let users manipulate their data via a collection of op-
erations which can be configured and composed. The way operations can be
composed, as well as the format of the data they act on, represent the main
design choice for these tools: it will determine what sort of workflow they
can represent naturally and efficiently. We will focus here on the tabular data
model popularized the OpenRefine software [Huynh et al., 2019], a widely used
open source tool popular in the linked open data and data journalism commu-
nities.! We give a self-contained description of the tool in Section 2.

We propose a complete categorical axiomatization for this data model, us-
ing two nested monoidal categories. This gives rise to a three-dimensional
diagrammatic language for the workflows, generalizing the widespread graph-
based representation of dataflow pipelines. The semantics and the complete
axiomatization provided makes it possible to use this model to reason about
workflow equivalence using intuitive graphical rules.

This has very concrete applications: at the time of writing, OpenRefine has
a very limited interface to manipulate workflows, where the various opera-
tions used in the transformation are combined in a simple list. Graph-based
representations of workflows are already popular in similar tools but are not
expressive enough to capture OpenRefine’s model, due to the use of facets,
which dynamically change the route followed by data records in the processing
pipeline depending on their values. Our approach solves this problem by giving
a natural graphical representation which can be understood with no knowledge
of category theory, making it amenable to implementation in the tool itself.

!See http://openrefine.org/, we encourage viewing the videos or trying the software directly, al-

though this article should be readable with no previous knowledge of the tool.

http://openrefine.org/

1 Categorical semantics of dataflow

Symmetric monoidal categories model an elementary sort of dataflow pipelines,
where the flow is acyclic and deterministic. This is well known in the applied
category theory community: for instance, Coecke [2010] illustrates it by mod-
elling food recipes by morphisms in such categories.

Definition 1. A symmetric monoidal category (SMC) is a category C equipped with
a symmetric bifunctor _ ® _ : C x C — C. The tensor product is furthermore required to

have a unit I € C and to be naturally associative.

Informally, objects of C are stream types and morphisms are dataflow pipelines
binding input streams to output streams. Pipelines can be composed sequen-
tially, binding the outputs of the first pipeline to the second, or in parallel,
obtaining a pipeline from both inputs to both outputs. The difference between
food and data is that discarding the latter is not frowned upon: data streams
can be discarded and copied, which makes the category cartesian.

Definition 2. A cartesian category is a symmetric monoidal category C equipped with
a natural family of symmetric comonoids (64 : A - A®A, L 4 : A — I)suchthat L7 =1;
and dagp = (14 ® 54,8 ® 1p) 0 (04 ® 0p). If these conditions are satisfied one may write

the product as x instead of ®.

The comultiplication é4 is the copying map and the counit | 4 is the discard-
ing map. One can check that this definition of cartesian category is equivalent
to the usual one, where the product is defined as the limit of a two-point dia-
gram. The idea behind defining a cartesian category as a symmetric monoidal
category with extra structure is to obtain a graphical calculus for cartesian
categories. Indeed, morphisms in a SMC can be represented as string dia-
grams [Selinger, 2010]. In Figure 1 we represent the copying and discarding
maps as explicit operations.” The equations they satisfy can then be stated
graphically in Figure 2.

A ¢ ks
(b) Discarding

(a) Copying (c) Arbitrary operation

Figure 1: Generators of a cartesian structure in a SMC

2We draw morphisms with the domain at the top and the codomain at the bottom.

b A

(a) Copying is unital for discarding (b) Copying is associative

P

(c) Operations without outputs discard inputs
(d) Copying is symmetric

(f) Discarding the outputs of an operation
(e) Copying the outputs of an operation

Figure 2: Axioms of a cartesian structure in a SMC

String diagrams for cartesian categories are essentially directed acyclic graphs,
and this graph-based representation is used in countless software packages,
well beyond ETL tools: for instance, Figure 3 shows a compositing workflow in
Blender3D?, where the graph-based representation of the image transforma-
tion pipeline is manipulated by the user directly.

N
FEExEN
v Use Alpha

L]

~ Use Alpha

L

LI« Alpha: 1.000 *
LN z: 1.000 +

Figure 3: Constructing an image by composing modules in Blender3D. Taken from https://docs.
blender.org/manual/en/latest/compositing/introduction.html, CC BY-SA.

3https://www.blender.org/

https://docs.blender.org/manual/en/latest/compositing/introduction.html
https://docs.blender.org/manual/en/latest/compositing/introduction.html
https://www.blender.org/

2 Overview of OpenRefine

Let us now get into more detail about how OpenRefine works. Loading a data
source into OpenRefine creates a project, which consists of a simple data ta-
ble: it is a collection of rows and columns. To each row and column, a value
(possibly null) is associated.

The user can then apply operations on this table. Applying an operation will
change the state of the table, usually by performing the same transformation
for each row in the table. Example of operations include removing a column,
reordering columns, normalizing the case of strings in a column or creating a
new column whose values are obtained by concatenating the values in other
columns. Users can configure these operations with the help of an expression
language which lets them derive the values of a new column from the values
in existing columns.

Unlike spreadsheet software, such expressions are fully evaluated when
stored in the cells that they define: at each stage of the transformation process,
the values in the table are static and will not be updated further if the values
they were derived from change in the future. For instance, in the sample project
of Figure /, the first operation creates a Full name column by concatenating the
Given name and Family name columns. Applying a second operation to capitalize
the Family name column does not change the values in the Full name column.

Another difference with spreadsheet software, where it is possible to refer-
ence any cell in the expression defining a cell, is that OpenRefine’s expression
language only lets the user access values from the same row. For instance,
in the same example project of Figure 4, spreadsheet software would make it
easy to compute the sum of all donations in a final row. This is not possible
in OpenRefine as this would amount to computing the value of a cell from the
value of other cells outside of its own row.

In other words, operations in OpenRefine are applied row-wise and are
stateless: no state is retained between the processing of rows. It is there-
fore simple to parallelize these operations, as they amount to a pure map on
the list of rows. This is a simplification: in reality, there are violations of these
requirements (for instance, OpenRefine offers a sorting operation, and a records
mode which introduces a restricted form of non-locality). Due to the limited
space we do not review these violations here.

Family name Given name Donation

Green Amanda 25€
Dawson Rupert 12€
de Boer John 40€
Tusk Maria 3€

(a) The initial state of the project

Family name Given name Full name Donation
Green Amanda Amanda Green 25€
Dawson Rupert Rupert Dawson 12€
de Boer John John de Boer 40€
Tusk Maria Maria Tusk 3€

(b) Applying an operation to create the Full name column

Family name Given name Full name Donation
GREEN Amanda Amanda Green 25€
DAWSON Rupert Rupert Dawson 12€
DE BOER John John de Boer 40€
TUSK Maria Maria Tusk 3€

(c) Applying an operation to capitalize the Family name column

(d) The workflow represented as a string diagram. Operation

« is concatenation, operation [is capitalization

Figure 4: Example of an OpenRefine project in its successive states, with the corresponding string

diagram

3 Elementary model of OpenRefine workflows

So far, OpenRefine fits neatly in the dataflow paradigm presented in Section 1.
One can view each column of a project as a data stream, which can be assigned
a type t € T: in our example project, the first two columns are string-valued
and the third contains monetary values. These data streams are synchronous:
the values they contain are aligned to form rows. An operation a € O can be
seen as reading values from some columns and writing new columns as output.
Because of the synchronicity requirement, an operation really is just a function
from tuples of input values on the columns it reads to values on the column it
writes.

The schema of a table, which is the list of its column types, can be naturally
represented by the product of the objects representing its column types. In the
example of Figure /, the initial table is therefore represented by Sx Sx M, where
S is the type of strings and M of monetary values. Letus call a: S x S — S the
first concatenation operation and 8 : S — S the second capitalization operation.
Figure /4d shows a string diagram which models the workflow of Figure 4.

Definition 3. The category £ of table schema and elementary OpenRefine workflows
between them is the free cartesian category generated by a set of datatypes D as objects

and a set of operations O as morphisms.

This modelling of OpenRefine workflows makes it easy to reason about the
information flow in the project. It is possible to rearrange the operations using
the axioms of a cartesian category to show that two workflows produce the
same results. We could add some generating equations between composites
of the generating operations, such as operations which commute even when
executed on the same column for instance.

Without loss of generality, we can assume that the generating operations
all have a single generating datatype as codomain, as the cartesian structure
makes it possible to represent generic operations as composites of their pro-
jections. Under these conditions, morphisms of £ can be rewritten to a normal
form, illustrated in Figure 5.

Lemma 1. Any morphism m € £ can be written as a vertical composite of three layers:
the first one only contains copying and discarding morphisms, the second only symmetries

and the third only generating operations (identities are allowed at each level).

copying and discarding

exchanges

Q (I) « operations

Figure 5: A diagram in £ and its normal form

All three slices in the decomposition above can be further normalized: for
instance, the cartesian slice can be expressed in left-associative form, the ex-
change slice is determined by the permutation it represents and the operation
slice can be expressed in right normal form [Delpeuch and Vicary, 2018]. This
gives a simple way to decide the equality of diagrams in £. Of course, decid-
ing equality in a free cartesian category just amounts to comparing tuples of
terms in universal algebra. We are only formulating it as a graphical rewriting
procedure to lay down the methodoly for the next section.

4 Model of OpenRefine workflows with facets

One key functionality of OpenRefine that we have ignored so far is its facets. A
facet on a column gives a summary of the value distribution in this column.
For instance, a facet on a column containing strings will display the distinct
strings occurring in the column and their number of occurences. A numerical
facet will display a histogram, a scatterplot facet will display points in the
plane, and so on.

Beyond the use of facets to analyze distributions of values, it is also possible
to select particular values in the facet, which selects the rows where these
values are found. It is then possible to run operations on these filtered rows
only. So far our operations ran on all rows indiscriminately, so we need to
extend our model to represent operations applied to a filtered set of rows.

We assume from now on a set F of filters in addition to our set of operations
O. Each filter f € F is associated with an object 7y € &, the type of data that
it filters on. Each filter can be thought of as a boolean expression that can be
evaluated for each value v € T}, determining if the value is included or excluded

by the filter. The type T is not required to be atomic: for instance, in the case
of a scatterplot filter, two numerical columns are read.

Definition 4. Let F be the free co-cartesian category generated as follows. We denote
by [A1,..., Ay] the product of objects Ay,..., A, in F to distinguish it from the product

x in €. For each object T € &, [T] € F is a generator. Morphism generators are:
(i) For each morphism a € £(T,U), there is a generator [a] : [T] — [U].

(ii) For each filter f and object U € &, there is a generator [f x U] : [Ty x U] —
[Tf X U,Tf X U]

For each object T € &, we call Jr : [T,T] — [T] and Er : [| = [T] the comultiplication
and counit provided by the co-cartesian structure.

The axioms satisfied by these generators are stated graphically in Figure 7, with the
notations introduced in Figure 6. In addition to these axioms, we require that [g] o [f] =
[g o f] (which is tautological graphically). In other words, £ embeds into F functorially

(but that functor is not monoidal).

The definition above can be interpreted intuitively as follows. An object in
& represents the schema of a table (the list of types of its columns). An object
of F is a list of objects of &, so it represents a list of table schemata. As will
be made clear by the semantics defined in the next section, a morphism in
F : [U,V] — [W, Z] should be thought of as a function mapping disjoint tables
of respective schemata U and V to disjoint tables of respective schemata W
or Z, and row-wise so: depending on its values, a row can end up in either
of the output tables. This makes it therefore possible to represent filters as
morphisms triaging rows to disjoint tables. A filter [f x U] operates on tables
of schema 7y x U, and only reads values from the first component to determine
whether to send the row to the first or second output table. This treatment of a
boolean predicate A — 2 as a morphism A — A + A is similar to that of effectus
theory Cho et al. [2015]. The comultiplication Jr is a union, merges two tables
of identical schemata together.* The counit Er is the empty table.

Given the two nested list structures in objects of F, it is natural to rep-
resent them as two-dimensional objects, and morphisms of F become three-
dimensional objects, as shown in Figure 6. Figure 7 states the relations satis-
fied by these generators using this convention.

4In this model, row order does not matter in this model: tables are sets of rows.

A B TfU
A
C D Ty TfU

(a) Operation [a] : [A x B] =+ [C'x D] (b) Filter [f xU] : [Ty xU] — [Ty xU, Ty x U]

T T
Ny
|~ VT
T (d) Empty table: Ep : [| — [T
(c) Union Jp : [T, T] — [T

Figure 6: Generators of F

(a) Merging a filter immediately does nothing (b) Filters commute even with a common col-

ey

c) Disjoint filters and operations commute d) Copying and filtering commute

C -t

(e) Filters do not modify data

Figure 7: Axioms of F

10

OpenRefine workflows with filters can be represented by morphisms F. For
the converse, we first show that morphisms of F can be represented in normal
form thanks to the following decomposition.

Lemma 2. Let m € F([A],[B]) be a morphism with one input sheet and one output
sheet. There exists a decomposition m = z oy o z o [w] such that w € &, x only contains

filters, y only contains discarding morphisms, and z only contains unions.

This decomposition can be used to show that all such morphisms arise from
OpenRefine workflows, despite the fact that some generators cannot be inter-
preted as such individually. As stated, this lemma does not provide normal
forms yet, as the order of filters in z is not determined. We will see in the
proof of Theorem 1 how this can be addressed.

5 Semantics and completeness

We can give set-valued semantics to £ and F and obtain completeness theo-
rems for our axiomatization of OpenRefine workflows.
Definition 5. A valuation V is given by:

(i) a set V(T') for each basic datatype 1" € &;

(ii) a function V(«a) : V(A) — V(B) for each generator o € £(A, B), where V(A) is the

cartesian product of the valuations of the basic types in A;
(iii) a subset V(f) C V(Ty) for each filter f.
Any valuation V defines a functor V* : F — Set as follows:

V¥([Ax--xB,...,Cx D]

V¥(la]

)=V(A)x---xV(B)U---u(V(C) x---x V(D))
)
VE([f < U))
)
) =

((z,u) = inj;(x,u)) with i =1 if z € V(f) else i = 2

Vi(lJr]
Vi ([Er]

(inj;(z) —)

(theinitialmorphism fromtheemptyset)

Using the decomposition of Lemma 2, we can then show the completeness of
our axiomatization for these semantics:

Theorem 1. Let d,d’, F([A],[B]) be diagrams. Then d = d’ by the axioms of F if and
only if V*(d) = V*(d’) for any valuation V.

11

The proof of this theorem is given in appendix. Broadly speaking, it goes
by building a valuation where values are syntactic terms, such that a value
encodes its entire own history through the processing pipeline. These syn-
tactic values are associated with contexts which record the validity of filter
expressions. The decomposition of Lemma 2 is then used to compute normal
forms for diagrams, which can be related to the evaluation of the diagram with
the syntactic valuation. These normal forms can be computed using a simple
diagramatic rewriting strategy, so this also solves the word problem for this
signature.

We conjecture that this result generalizes to arbitrary morphisms in F, with
multiple input and output tables. However, all OpenRefine workflows have one
input and one output table, so the theorem already covers these.

6 Conclusion

We have presented a complete axiomatization of the core data model of Open-
Refine. This gives a diagrammatic representation for workflows and an algo-
rithm to determine if two workflows are equivalent up to these axioms.

As future work, this visualization suggested by the categorical model could
be implemented in the tool itself. This would make workflows easier to in-
spect, share and re-arrange. This representation could also be the basis of a
more profound overhaul of the implementation of the data model, which would
make workflow execution more scalable. The axiomatization could also be ex-
tended to account for algebraic equations involving the operations, although
it seems hard to preserve completeness and decidability for non-trivial equa-
tional theories. Finally, the model could be extended to account for a larger
class of operations, for instance order-dependent ones such as sorting, or op-
erations which are not applied row-wise (using OpenRefine’s record mode).

7 Acknowledgements

We thank David Reutter, Jamie Vicary and the anonymous reviewers for their
helpful feedback on the project. The author is supported by an EPSRC Stu-
dentship.

12

References

Kenta Cho, Bart Jacobs, Bas Westerbaan, and Abraham Westerbaan. An Intro-
duction to Effectus Theory. arXiv:1512.05813 [quant-ph], December 2015.

Bob Coecke. Quantum Picturalism. Contemporary Physics, 51(1):59-83, January
2010. ISSN 0010-7514, 1366-5812. DOI: 10.1080/0010751090325762/.

Antonin Delpeuch and Jamie Vicary. Normalization for planar string diagrams
and a quadratic equivalence algorithm. arXiv:1804.07832 [cs], April 2018.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data
flow programming language LUSTRE. Proceedings of the IEEE, 79(9):1305-
1320, 1991. ISSN 00189219. DOI: 10.1109/5.97300.

Thomas T. Hildebrandt, Prakash Panangaden, and Glynn Winskel. A relational
model of non-deterministic dataflow. Mathematical Structures in Computer
Science, 14(5):613-649, October 2004. ISSN 0960-1295, 1469-8072. DOI:
10.1017/S09601295040042.93.

David Huynh, Tom Morris, Stefano Mazzocchi, Iain Sproat, Martin Magdinier,
Thad Guidry, Jesus M. Castagnetto, James Home, Cora Johnson-Roberson,
Will Moffat, Pablo Moyano, David Leoni, Peilonghui, Rudy Alvarez, Vishal
Talwar, Scott Wiedemann, Mateja Verlic, Antonin Delpeuch, Shixiong Zhu,
Charles Pritchard, Ankit Sardesai, Gideon Thomas, Daniel Berthereau, and
Andreas Kohn. OpenRefine. 2019. DOI: 10.5281/zenodo.595996.

Gilles Kahn. The semantics of a simple language for parallel programming.
Information processing, 74:471-475, 1974.

K. M. Kavi, B. P. Buckles, and U. N. Bhat. Isomorphisms Between Petri Nets
and Dataflow Graphs. IEEE Transactions on Software Engineering, SE-13(10):
1127-1134, October 1987. ISSN 0098-5589. DOI: 10.1109/TSE.1987.232854.

José Meseguer, Ugo Montanari, and Vladimiro Sassone. On the semantics
of Petri Nets. In W.R. Cleaveland, editor, CONCUR ’92, volume 630, pages
286-301. Springer Berlin Heidelberg, 1992. ISBN 978-3-540-55822-4. DOI:
10.1007/BFb0084798.

Carl Adam Petri. Communication with automata. page 97, 1966.

Vaughn Pratt. Modeling concurrency with geometry. In Proceedings of the
18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
- POPL ’91, pages 311-322, Orlando, Florida, United States, 1991. ACM Press.
ISBN 978-0-89791-419-2. DOI: 10.1145/99583.99625.

13

https://doi.org/10.1080/00107510903257624
https://doi.org/10.1109/5.97300
https://doi.org/10.1017/S0960129504004293
https://doi.org/10.1017/S0960129504004293
https://doi.org/10.5281/zenodo.595996
https://doi.org/10.1109/TSE.1987.232854
https://doi.org/10.1007/BFb0084798
https://doi.org/10.1007/BFb0084798
https://doi.org/10.1145/99583.99625

P. Selinger. A Survey of Graphical Languages for Monoidal Categories. In
Bob Coecke, editor, New Structures for Physics, number 813 in Lecture Notes
in Physics, pages 289-355. Springer Berlin Heidelberg, 2010. ISBN 978-3-
642-12820-2 978-3-642-12821-9. DOI: 10.1007/978-3-642-12821-9 /.

Eugene W. Stark. Dataflow networks are fibrations. In David H. Pitt, Pierre-
Louis Curien, Samson Abramsky, Andrew M. Pitts, Axel Poigné, and David E.
Rydeheard, editors, Category Theory and Computer Science, Lecture Notes in
Computer Science, pages 261-281. Springer Berlin Heidelberg, 1991. ISBN
978-3-540-38413-7.

Edward Walker, Weijia Xu, and Vinoth Chandar. Composing and execut-
ing parallel data-flow graphs with shell pipes. In Proceedings of the 4th
Workshop on Workflows in Support of Large-Scale Science - WORKS ’09, pages 1-
10, Portland, Oregon, 2009. ACM Press. ISBN 978-1-60558-717-2. DOI:

10.1145/1645164.16 45175.

14

https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1145/1645164.1645175
https://doi.org/10.1145/1645164.1645175

A Proofs for Section 4 (Model of OpenRefine workflows with facets)

Lemma 2. Let m € F([A],[B]) be a morphism with one input sheet and one output
sheet. There exists a decomposition m = z oy oz o [w| such that w € £, x only contains

filters, y only contains discarding morphisms, and z only contains unions.

Proof. First, any empty tables E7 in the diagram can be eliminated as co-cartesian units,
just like discarding morphisms can be eliminated in the cartesian case (Section 3).

We then move all operations, copy morphisms and exchanges in £ up to the first
sheet. Operations and copy morphisms can be moved past unions and empty tables by
the properties of the co-cartesian structure. Although Equation 7c¢ can only be used for
operations and filters applied to disjoint columns, it can be combined with Equation 7d

to commute any operation and filter, possibly leaving discarding morphisms behind:

g

This lets us push all operations up, obtaining the first part of the factorization: m = ¢ow]

with w € £ and ¢ consists of filters, unions, discarding morphisms and exchanges in F.
Unions can be moved down by naturality, obtaining m = z o ¢’ o [w] where ¢ only

consists of filters, discarding morphisms and exchanges in F. Then, all exchanges in ¢’

can be moved down by naturality and absorbed by z. Finally, all discarding morphisms

can be moved down past the filters using Equation 7c. []

B Proofs for Section 5 (Semantics and completeness)

Theorem 1. Let d,d’, F([A],[B]) be diagrams. Then d = d’' by the axioms of F if and
only if V*(d) = V*(d') for any valuation V.

Proof. We can check that all equations of Figure 7 preserve the semantics under any
valuation, so if two diagrams are equivalent up to these axioms, then their interpretations
are equal. For the converse, let us first introduce a few notions. We use a countable set

of variables V' = {z1, z2, z3,... }.

Definition 6. The set O of terms is defined inductively: it contains the variables V', and

for each an operation symbol o € O of input arity n and output arity p, it contains the

15

terms a(ty,...,tn)[1],...,a(t1,...,t,)[p]. These terms represent the projections of the

operation applied to the input terms.

The set O,, of terms over n variables is the set of terms where only variables from
{z1,...,2,} are used. Givent € 0, and uy,...,u, € O,, we can substitute simultaneously
all the x; by u;, which we denote by t[uq, ..., u,]. For instance, let t = a(5(x1,x3)[2], z1)[1]
and u; = x3, ug = x4 and uz = y(z1)[3]. Then t[u1, us, us] = a(B(xs, v(x1)[3])[2], z3)[1].

Definition 7. An atomic filter formula (AFF) over n variables is given by a filter
symbol f and terms t1,...,t, € O, where a is the arity of f. It is denoted by f(t1,...,t,)

and represents the boolean condition evaluated on the given terms.

We denote by ® the set of all atomic filter formulae. Similarly, ®,, is the set of AFF

over n variables.

Definition 8. A conjunctive filter formula (CFF) over n variables is a given by
a finite set A C ¥, x B of pairs of atomic filter formulae and booleans, called clauses,
such that no atomic filter formula appears with both booleans. Such a set represents the
conjunction of all its clauses, negated when their associated boolean is false.

Two CFF A and B are disjoint if they contain the same atomic filter formula with
opposite booleans. Otherwise, we can form the conjuction A A B, which is the CFF with

clauses A U B.

We denote by A the set of CFF and A, that of those over n variables. A CFF is

represented as a conjuctive clause in boolean logic, such as f(x1, a(xs, z2)[1]) A g(x3).

Definition 9. A truth table ¢t on n variables and p outputs, denoted by t : n — p, is a
finite set of cases c € A, x ©F such that all the CFF are pairwise disjoint. This represents
possible values for an object, depending on the evaluation of some filters.

Truth tables t, ¢’ both on n variables and p outputs are disjoint if all the CFF involved
are pairwise disjoint. The wnion of two disjoint truth tables ¢,#', denoted by t U t/, is
the union of their cases. The composition of truth tables t : m — p and ' : p — g,

denoted by ¢;', is formed of the cases (c; A ¢j, uy[win, ... wipl, .. uf [ui, ... wip]) for

/
jvq[

all (¢;,u;) € t and (¢},

i j) such that ¢; and ¢; are compatible.

A collection of truth tables (t; : n — p); forms a partition if the CFF in them are
all disjoint and their disjunction is a tautology. The projection of a truth table t with p
outputs on its k-th component, 1 < k < k, denoted by t[k], is given by the cases (¢;, ui)
for (c;,u;) € t. The product of truth tables t : n — p and ¢ : n — ¢, denoted by

t@t :n — p+q, is given by the cases (¢; A c;-,ui,u;-) for all (¢;,u;) € t and (c;,u;) et

16

such that ¢; and ¢; are compatible. Two truth tables ¢,¢' : n — p are equivalent, denoted

by t ~ ¢, if all the cases in t ® t' have value tuples of the form (vq,...,vp,v1,...,0p).

One can check that all the properties and operations on truth tables defined above respect
the equivalence relation ~: we will therefore work up to this equivalence in the sequel.

We can represent truth tables by their list of cases:

f(@1) Ag(y(z2)[l]) = (23, a1, 21)[1])
f(@1) Ag(y(z2)[1]) = (22, a1, 21)[1])
flz1) = (B(w2,23)[2], 1)

With the syntactic objects just defined, we can now define semantics for F that are
independent from any valuation. The morphisms will be families of truth tables, which

can interpret the generators of F.

Definition 10. The category 7 is a symmetric monoidal category with Ob(7) = N*
(lists of natural numbers) and where the monoidal product is given by concatenation. A
morphism t € T ([a1,...,an], [b1,...,bn]) is a collection ¢; ; of truth tables, 1 < i < n
and 1 < j < m, such that ¢;; is of type a; — b;, and for each 4, (¢;;); is a partition.
Furthermore we require that m > 0 unless n = 0.

Given morphisms ¢ : [a1,...,an] = [b1,...,bp] and w : [b1,...,bn] = [c1,..., ¢y, the
composite t;u is given by (t;u)ik = Ur<j<im (tij; tjk)-

The tensor product of ¢ : [a1,...,an] = [b1,...,bp] and w : [c1,...,¢p) = [di, ..., dg] is
the morphism v : [a1,...,an,C1,...,¢) = [b1,...,bm,d1,...,dg] defined by v; ; = t; ; for
i <mnandj <p, v = U_njm for i >nand j > p, and the empty truth table otherwise.

The identity 1 on [a1 ..., a,] is given by 1, = T — (x1,...,2p).

There is a functor P : F — T defined on objects by P([A1 x --- x A,]) = [n] and on

morphisms by Figure 8. One can check that it respects the axioms of F.

Lemma 3. The functor P is faithful.

Proof. We show this by relating the image P(d) of a diagram to its decomposition given
by Lemma 2. As such, this decomposition does not give a normal form, as the order of

the filters remains unspecified. However, successive filters can be swapped freely:

17

A B {
] -
‘ D (T = (a1, 22)[1], a(z1, 72)[2]))

C
T U / \
f —
Ty ¥, U (f(z1 (w1, 22)) (w1, 22))
T T T'—).Tl T'—).Tl
\ 7

T
m — (empty truth table)
T

Figure 8: Definition of P : F — T

Let us pick an arbitrary order on @, the set of atomic filter formulae. In a diagram d
decomposed by Lemma 2 as zoyox o [w], Each occurence of a filter in = can be associated
with an AFF defined by the filter symbol for the filter and the term obtained from the
wires read from w. Commuting filters as above does not change their corresponding AFF.
Therefore this determines an order on the filters occurring in . We can rearrange the
filters so that f appears above ¢ if their corresponding AFFs are ordered accordingly. This
will add new exchanges and unions in x, but we can use Lemma 2 a second time to push
these to their part of the decomposition, as this procedure does not reorder the filters.

The rest of the decomposition can be normalized too: unions can be normalized by
associativity, and any discarding morphism that is present in all sheets of y and discards
a wire not read by any filter in x can be pushed up into w, which can be normalized as a
morphism in &.

From such a normalized decomposition, we can read out the truth table P(d) directly.
Each sheet in y corresponds to a case of P(d), whose condition is determined by the
conjunction of all the AFFs of the filters leading to it, with the appropriate boolean
depending on the side of the filter they are on. Therefore, if P(d) = P(d'), thend =d'. O

Definition 11. The syntactic valuation S is defined as follows. For each basic datype
T, S(T) = © x 2% + {L}. In other words, a value can be either a term together with a

context of true atomic filter formulae, or an inconsistent value L.

18

For each facet f, S(f): (C,t) — f(t) € C: a facet is true if it belongs to the context.

For each operation oo : Ty X -+ X T}, = Uy X -+ X Upy,

(@) : ((Cyt1), ... (Cotn)) = ((Cyalts, ..., ta)[1], ... alts, ... tn)[m]))

anything else — L

There is a functor IT : 7 — Set, defined on objects by I([n1,...,n,]) = (0 x 2% +
{LH™u---u (O x 2%+ {L})™. Given a morphism t : n — p, we define II(¢)(inj;(z)) as
follows. If x contains any L or if the contexts in it are not all equal, then II(¢)(inj;(z)) =
inj; ((L,...,L)).” Otherwise, as the truth tables (t;;); form a partition, there is a single
case (C,y) in all of them such that the associated CFF is true in the common context C.
Let j be the output index of its truth table: we set I1(¢)(inj;(z)) = inj;(y[z]). One can

check that this defines a monoidal functor.

Lemma 4. The functor IT is faithful.

Proof. For simplicity, let us concentrate on the case of morphisms ¢,¢' : [n] — [p]: this is
the only case that is actually needed to prove the completeness theorem, and the general
case is similar. If II(¢) = II(¢'), then consider t®t" : n — 2p. For each case (f,u,u’) € tat,
with f a CFF and u, v tuples of terms, (f,u) = II(¢)(f, z1,...,2n) = L) (f,21,...,20) =
(f,u'), so u=u'. Therefore t ~ . O

Finally, combining Lemma 3 and Lemma 4, we obtain that ITo P : 7 — Set is faithful.
But in fact Il o P = S*, the functor arising from the valuation S. So, if two diagrams
d,d" € F give equal interpretations under any valuation V, then it is in particular the case

for V' =S, and by faithfulness of S*, d = d'. O

5This is possible because we have assumed that codomains of morphisms in 7~ are nonempty except for

the identity on the monoidal unit.

19

	1 Categorical semantics of dataflow
	2 Overview of OpenRefine
	3 Elementary model of OpenRefine workflows
	4 Model of OpenRefine workflows with facets
	5 Semantics and completeness
	6 Conclusion
	7 Acknowledgements
	A Proofs for Section 4 (Model of OpenRefine workflows with facets)
	B Proofs for Section 5 (Semantics and completeness)

