Journal article Open Access

Investigating face veneer check development in decorative plywood panels: the impact of four common manufacturing factors

Michael Burnard; Scott Leavengood; Lech Muszyński; Lisa Ganio


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200120170249.0</controlfield>
  <controlfield tag="001">3457780</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Wood Science and Engineering, College of Forestry, Oregon State University</subfield>
    <subfield code="0">(orcid)0000-0002-2938-2220</subfield>
    <subfield code="a">Scott Leavengood</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Wood Science and Engineering, College of Forestry, Oregon State University</subfield>
    <subfield code="a">Lech Muszyński</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Forest Ecosystems and Society, College of Forestry, Oregon State University</subfield>
    <subfield code="a">Lisa Ganio</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3089296</subfield>
    <subfield code="z">md5:75c95f652c6722b50b96675c84e6936b</subfield>
    <subfield code="u">https://zenodo.org/record/3457780/files/Burnard2019_Article_InvestigatingFaceVeneerCheckDe.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-09-13</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-innorenew</subfield>
    <subfield code="o">oai:zenodo.org:3457780</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">European Journal of Wood and Wood Products</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">InnoRenew CoE; University of Primorska, Andrej Marušič Institute</subfield>
    <subfield code="0">(orcid)0000-0001-9357-0819</subfield>
    <subfield code="a">Michael Burnard</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Investigating face veneer check development in decorative plywood panels: the impact of four common manufacturing factors</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-innorenew</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">739574</subfield>
    <subfield code="a">Renewable materials and healthy environments research and innovation centre of excellence</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;An optical method based on digital image correlation was used to investigate the impact of four decorative plywood manufacturing factors (core type, veneer type, adhesive type and lathe check orientation) on face veneer checking. The four core types were: combination core, medium density fbreboard, particleboard, and veneer core. The four veneer types were: peeled 0.604&amp;nbsp;mm, peeled 0.706&amp;nbsp;mm, sliced 0.508&amp;nbsp;mm, and sliced 0.564&amp;nbsp;mm. Both loose-side out and tight-side out lathe check orientations were used. The adhesive systems were urea&amp;ndash;formaldehyde, polyvinyl acetate, and soy-protein based. 96 treatment combinations with 8 replicates were tested. All specimens were exposed to harsh but realistic drying conditions (approximately 30&amp;deg;C and 26% relative humidity) for 4&amp;nbsp;h during inspection. Checks were detected on 428 out of a total of 765 specimens (56%). The estimated mean check densities (area of checking per unit area) indicated some unfavourable factor combinations. All factors had some degree of interaction with one another and check development could not be attributed to a single factor examined in this study. The data were ft to a generalized linear mixed model based on Tweedie&amp;rsquo;s compound Poisson distribution. Confdence intervals were calculated via bootstrapping. The check density estimates produced by this model can be used to cautiously guide manufacturers as they decide on panel components. The broader use of the model is to highlight the complexity of the problem and guide future research in this area.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/s00107-019-01455-2</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="q">alternateidentifier</subfield>
    <subfield code="a">0018-3768</subfield>
    <subfield code="2">issn</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
46
57
views
downloads
Views 46
Downloads 57
Data volume 176.1 MB
Unique views 45
Unique downloads 53

Share

Cite as