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Abstract

Understanding mechanistic aspects of reactivity lies at the heart of chemistry. Once

the potential energy surface (PES) for a system of interest is known, its reactions can

be studied by computational means. While the minimum energy path (MEP) between

two minima of the PES can give some insight into the topological changes required for

a reaction to occur, it lacks dynamical information and is an unrealistic depiction of

the reactive process. For a more realistic view molecular dynamics (MD) simulations

are required. However, this usually involves generating thousands of trajectories in

order to sample a few reactive events and is therefore much more computationally

expensive than calculating the MEP. In this work, it is shown that a “minimum dynamic

path” (MDP) can be constructed, which, contrary to the MEP, provides insight into

the reaction dynamics. It is shown that the underlying concepts can be extended to

directly sample reactive regions in phase space. The sampling method and the MDP are

demonstrated on the well-known 2-dimensional Müller-Brown PES and on a realistic

12-dimensional reactive PES for sulfurochloridic acid, a proxy molecule used to study

vibrationally induced photodissociation of sulfuric acid.
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1 Introduction

Understanding the mechanistic details of a reaction is one of the central goals of chemistry.

In particular, one aim is to identify “active” degrees of freedom, which correspond to an in-

ternal motion promoting the reaction to occur. Once such modes are identified, they can be

used to answer questions such as: i) which initial conditions lead to a reaction within a given

time to reaction tr or ii) how likely is a reaction to occur from a given set of initial conditions?

Knowledge of the active modes could even be exploited to drive a reaction forward, which

is the aim of (coherent) control in chemistry.1,2 Given the advances in laser technology, it

is now possible to deposit energy selectively in specific internal degrees of freedom and to

follow redistribution of this energy.3,4 Controlling chemical reactions in such a way is already

possible for specific systems at low temperatures (T < 1 K).5 Unfortunately, identifying the

degrees of freedom relevant for a reaction is not an easy task.6,7

Chemical reactions are driven by the underlying, multidimensional potential energy surface

(PES). Once the (reactive) PES for a system is known, its topography and the dynamics on

it can be studied by computational means. Starting from two minima on the PES (e.g. reac-

tant and product states), it is common practice to construct the so-called minimum energy

path (MEP) connecting them, for example using the nudged elastic band (NEB) method.8

A modified algorithm, the climbing image nudged elastic band method (CINEB)9 also al-

lows to find the transition state (TS) connecting both minima. Alternatively, a method like

conjugate peak refinement10 could be used to locate the TS. However, the MEP is merely

a convenient mathematical construct to connect reactant and product states and has little

relevance for the dynamics on the PES.11 While the MEP can provide insight into the overall

reaction mechanism, it hides important features pertaining to the reaction dynamics, such

as the participating internal or active degrees of freedom and how energy flows between them.
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In order to construct a realistic dynamical path, different approaches are necessary. For

example, it is possible to formulate the task of finding a path connecting a reactant and

product state as a two-point boundary value problem.12 Such an approach has been formu-

lated successfully in terms of a minimization problem involving the Onsager-Machlup (OM)

action (which requires second derivatives)13 or a modified target function Θ, that serves as

an approximation to the OM action (involving first derivatives only14), for which the trajec-

tory is expanded in a Fourier series, as is known from Fourier path integral simulations.15

The OM action can be thought of as a measure for the violation of Newton’s equations of

motion: Every Newtonian trajectory has an OM action of exactly zero. However, starting

from arbitrary boundary values, paths determined by minimizing the OM action were found

to not necessarily conserve energy, whereas the Θ trajectories do, but are quite similar to a

MEP for the Müller-Brown PES.14

Alternatively, molecular dynamics (MD) simulations based on accurate energy functions can

be used to gain insight into dynamical processes governing a reaction.16–21 However, for a

realistic description of a chemical reaction a statistically significant number (104 or more) of

such simulations is required. This is usually not possible with the most accurate approach

which would be ab initio MD simulations at a sufficiently high level of theory. Therefore,

energy functions fitted to electronic structure calculations at a relatively high level of theory

(multireference CI for triatomic systems22 or Møller-Plesset perturbation theory for larger

molecules23,24) have been used in the past. Running such a large number of MD trajectories

is, however, computationally considerably more expensive than calculating the MEP.

For this reason, computational methods were devised to improve the sampling of such rare

events. For example, in transition path sampling (TPS), once the dynamical bottleneck of

a reaction – its transition state surface – is identified, reactive trajectories can be generated

efficiently using Monte Carlo sampling.25,26 Another example is milestoning, which aims to
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compute the time scale of complex processes with predetermined “milestones” (slices of the

transition path, which are sampled with short trajectories) along a reaction coordinate.27

Other methods to sample rare events are for example the minimum action method,28 or

the string method,29 which is based on transition path theory.30 Reaction rates can also be

estimated from methods such as transition interface sampling,31 transition state theory and

extensions thereof,32–35 which estimate the reactive flux through a so-called dividing surface.

In the present work the concept of a “minimum dynamic path” (MDP) is considered as an

alternative approach and related to the underlying structure of phase space. The MDP cor-

responds to the lowest energy dynamical (following Newton’s equations of motion) reactive

path in phase space. Contrary to the MEP, it provides insight into the reaction dynam-

ics and has, by definition, an OM action of zero. Once the transition state of a reaction

is known, the MDP can be readily constructed with a computational effort comparable to

running a single trajectory (requiring only one additional evaluation of the Hessian). The

construction method can easily be extended to generate reactive initial conditions for a mi-

crocanonical ensemble of trajectories with arbitrary excess energy ∆E. It is further shown

that insight obtained from the MDP is also relevant for reactive trajectories at higher energy.

First, these concepts are investigated for the well-known 2-dimensional Müller-Brown PES36

for which exhaustive sampling is possible and serves as a validation of the results from the

MDP. It is found that particular initial conditions can be prepared which lead to crossing

the transition state with certainty. In a next step, the reactive dynamics for a realistic,

12-dimensional reactive PES describing the dissociation dynamics of sulfurochloridic acid23

is investigated. This molecule is a proxy to study vibrationally induced photodissociation of

sulfuric acid.37,38
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2 The Minimum Dynamic Path and Sampling Reac-

tive Initial Conditions

Since the transition state of a PES is defined as the configuration xTS with the highest poten-

tial energy V (xTS) = ETS along the minimum energy path (MEP), every reactive trajectory

with constant energy must have a total energy Etot = Epot +Ekin ≥ ETS. It follows that the

reactive trajectory with the lowest possible total energy Etot = ETS must pass through the

TS exactly and have a kinetic energy Ekin = 0 at the TS. The path this special trajectory

follows through configurational space will henceforth be referred to as the minimum dynamic

path (MDP). Note that the MDP and the MEP differ because a dynamical system is not

only guided by forces, i.e. the gradient of the PES (which solely determines the MEP),

but also keeps a “memory” of past gradients in its current momenta. In the over-damped

limit, this memory is completely lost and trajectories approach the MEP (see also section S1).

Transition states are mathematically defined as first-order saddle points of the potential en-

ergy surface V (x), i.e. saddle points at which the Hessian has only one negative eigenvalue

λn with corresponding eigenvector en. The MDP can be readily approximated by starting

two trajectories at the TS with initial momenta p0 = ±εen (where ε is small) and following

their paths through phase space until the desired reactant or product state of the reaction is

reached. Since the equations of motion are symmetric under time reversal, both paths can

be combined to give the MDP.

It is also possible to extend this procedure to generate reactive initial conditions (x,p) in

phase space with Etot ≥ ETS. For this, the concept of a “separating hypersurface” is intro-

duced: Consider a PES with two minima labelled I and II and a saddle point TS separating

them. Starting at an arbitrary point P in configuration space and following the direction of

steepest descent, every path initiated at P will reach either I, II, or rarely the TS. The sets
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of points that converge to I or II form the basins of attraction for the respective minima,

whereas the set of points that converges to TS forms a hypersurface separating those basins

of attraction (see Figures 1 and 2A). This hypersurface must be crossed by every reactive

trajectory going from I to II at some point and is referred to as the separating hypersurface.

Note that points on this hypersurface do not react equally likely to either I or II, i.e. this

surface differs from the isocommittor surface.6,7,39 It is also distinct from the concept of a

dividing surface used in TPS. The dividing surface is the hypersurface with the lowest num-

ber of recrossings for which trajectories reach educt and product states equally likely.26 The

topology of the separating hypersurface on the other hand does not contain any dynamic

information and depends solely on the underlying PES. It is important to point out that

while the sampling method presented here does generate reactive initial conditions, they do

not correspond to a thermal ensemble. In the limit of infinite sampling, rates from a micro-

canonical and a canonical treatment are identical, though, even for a few-particle system.40

To sample a reactive initial condition (x,p) in phase space with energy Etot ≥ ETS, these

steps are followed:

1. A point x0 with potential energy Epot ≤ Etot is generated on the separating hypersur-

face as follows: Starting at configuration x = xTS + εe⊥ (see Figure 1A), where xTS is

the configuration of the TS, ε is a small number and e⊥ is a random direction perpen-

dicular to en, the gradient is followed along the direction of steepest ascent until the

desired energy Epot is reached at point x0 (see Figure 1B). The small initial displace-

ment by εe⊥ is required because at the transition state, the direction of steepest ascent

is undefined. Following the gradient ensures that the point x0 lies on the separating

hypersurface, which generally is curved.

2. A momentum vector p0 with random direction is drawn from an unbiased distribution

and its magnitude scaled such that Etot = Ekin +Epot. It should be noted that drawing

momenta from an unbiased distribution and scaling their magnitude generates reactive
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initial conditions corresponding to a microcanonical ensemble. In order to obtain

thermal reactive initial conditions the momenta would have to be drawn from a flux-

weighted distribution.41

3. A trajectory is started with initial conditions (x0,±p0). A short MD simulation with

both initial conditions (Figure 1C) is necessary in order to verify that the two trajec-

tories move towards the two different basins of attraction, which is not guaranteed a

priori.

4. If this requirement is met, a longer trajectory is run until time τ (which is chosen arbi-

trarily) starting from either (x0,p0) or (x0,−p0) and the final positions and momenta

(xτ ,pτ ) are recorded (Figure 1D). Since the equations of motion are time reversal

symmetric, a trajectory starting from the initial condition (xτ ,−pτ ) is reactive and

will pass the separating hypersurface after the chosen time τ . All reactive trajectories

generated in this fashion form the “reactive phase space”, i.e. a subset of produc-

tive initial conditions which lead to reaction (cross the separating hypersurface). Note

that this sampling procedure is conceptually similar to “shooting” in TPS,42 but here,

trajectories are always started on the separating hypersurface instead of a point in

configurational space reached after a random time.
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Figure 1: Schematic representation of the sampling procedure to generate reactive initial
conditions with arbitrary energy Etot > ETS. The topology of the potential energy surface
is indicated by contour lines and colours, with red tints signifying high- and blue tints low
energy regions. A: The position of the transition state is xTS, I and II label the basins
of attraction of the respective minima and the solid black line indicates the separating
hypersurface that must be crossed by every trajectory in order to react. B: Starting from
xTS + εe⊥, the direction of steepest ascent (red arrows) is followed until the desired potential
energy V (x0) = Epot ≤ Etot is reached at x0. Note that the small displacement εe⊥ from xTS

is necessary, because at the TS, the direction of steepest ascent is undefined. C: A momentum
vector p0 with random direction is drawn from a uniform distribution and scaled such that
Ekin + Epot = Etot. Two short trajectories (indicated by dotted lines) are started from the
initial conditions (x0,p0) (red) and (x0,−p0) (blue) in order to confirm that both trajectories
evolve towards different basins of attraction. If not, a new combination (x0,p0) is generated.
D: Either of the trajectories is followed up to time τ and its final state (xτ ,pτ ) is recorded.
Due to time reversal symmetry, a trajectory starting from (xτ ,−pτ ) will pass the separating
hypersurface after time τ and is therefore reactive.
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3 The MDP for the Müller-Brown Surface

In order to verify that the procedure described in section 2 can be applied and used to

extract information about the underlying dynamics, the well-known 2-dimensional Müller-

Brown PES36 is considered

V (x, y) =
4∑
i=1

Aie
ai(x−x0,i)2+bi(x−x0,i)(y−y0,i)+ci(y−y0,i)2 (1)

with A = [−200, −100, −170, 15], a = [−1, −1, −6.5, 0.7], b = [0, 0, 11, 0.6], c = [−10, −10,

−6.5, 0.7], x0 = [1, 0, −0.5, −1] and y0 = [0, 0.5, 1.5, 1]. The PES features three minima of

increasing depth with energies E1 ≈ −80.768, E2 ≈ −108.167 and E3 ≈ −146.700. The tran-

sition state (TS) connecting the deepest minimum with the shallower minima corresponds

to an energy of approximately ETS ≈ −40.665 (see Figure 2A).

Since the phase space corresponding to the Müller-Brown system is only 4-dimensional

((x, y, px, py)), it is possible to determine all regions in phase space that lead to reaction

by exhaustive sampling. In order to test whether the method described in section 2 samples

the same regions as such an unbiased sampling, an unambiguous definition of a reactive tra-

jectory is required. For this purpose, the trajectory of a particle with mass m = 1 and total

energy Etot = ETS + ∆E is considered to be reactive if it reaches minimum 2 (product state)

within time tmax = 20 starting from minimum 3 (reactant state). A trajectory is terminated

when it reaches the product within t ≤ tmax in which case it is “reactive” or after tmax in

which case it counts as “unreactive”, even if it could react at a later time. Reactant- and

product states are defined to be the set of points (x, y) enclosed by ellipses centered around

the corresponding minima given by the parametric equations

x(s) = x0 +
1

10
cos(s) cos(φ)− 1

20
sin(s) sin(φ)

y(s) = y0 +
1

20
sin(s) cos(φ) +

1

10
cos(s) sin(φ)

(2)

9



with x0 ≈ −0.56, y0 ≈ 1.44 and φ = π/4 defining the reactant- and x0 ≈ 0.62, y0 ≈ 0.028

and φ = 0 defining the product state (see blue and red ellipses in Figures 2B–F). These

definitions are largely arbitrary, but needed in order to define an unambiguous reactant-

and product state. The equivalence between exhaustive unbiased sampling and the method

described in section 2 can be tested with any arbitrary definition of states and choice of tmax.

The reactive part of phase space is sampled exhaustively by generating trajectories with

unbiased random initial conditions (x, y, px, py) such that the total energy corresponds to

Etot = Epot +Ekin = ET +∆E. If a trajectory starting from (x, y, px, py) reaches the product

state in time t1 and a trajectory starting from (x, y,−px,−py) reaches the reactant state in

time t2 such that t1 + t2 ≤ tmax, the initial condition (x, y, px, py) belongs to the reactive

part of the phase space (see Figures 2B–F). Note that with increasing excess energy ∆E,

more states on the separating hypersurface become energetically accessible, which leads to

a widening of the transition region, which is also known from explicit reactive MD simula-

tions.43 Further, while the MDP remains representative for most of the reactive part of phase

space, with increasing excess energy additional “reaction channels” open up (see Figure 2B–

F) for which the time until the product state is reached can differ significantly (see Figure

S2). It is interesting to note that, depending on ∆E, the tubes emanating from either A or

B do not cover the entire boundary of the ellipses but rather correspond to discrete regions

in phase space (see Figure S1).

In summary, the method described in section 2 is able to efficiently sample the reactive re-

gions in phase space and converges to the same set of initial conditions as unbiased sampling

(see Figure 2). This is also the reason why the results from explicit sampling are not re-

ported separately. Comparing the reactive part of phase space (even for large excess energy

∆E) with the MDP also shows that the MDP is representative for the reactive phase space

explicitly sampled by the system, see e.g Figure 2 panels A and C.
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D E F

E = 0.1 E = 1.0

E = 2.5 E = 5.0 E = 10.0

Figure 2: A: Topology of the Müller-Brown PES.36 Contour lines are drawn every 10 energy
units starting at E = −145. The minima marked with 1, 2 and 3 correspond to energies
of E1 ≈ −80.768, E2 ≈ −108.167 and E3 ≈ −146.700, respectively, whereas the TS is at
ETS ≈ −40.665. The solid black and red lines depict the minimum energy path (MEP)
and the minimum dynamic path (MDP) of a particle with mass m = 1 between minima 2
and 3, respectively. The dotted black line indicates the separating hypersurface between the
basins of attraction of minima 1 and 2 and minimum 3. Panels B to F: Depiction of the
subspace of phase space with constant energy E = ETS + ∆E for trajectories of a particle
with mass m = 1 that evolve from the reactant state (red ellipsis) to the product state
(blue ellipsis) in time t ≤ 20. Black regions are energetically inaccessible. The colours
encode the average direction of reactive trajectories in momentum space for a given point
in coordinate space according to the colour legend shown in the top right corner of each
panel. More saturated colours indicate a stronger preference for a particular direction in
momentum space, whereas completely white regions contain no reactive trajectories at all.
For small ∆E, the overall shape of the reactive part of phase space closely resembles the
MDP (see solid red line in panel A). For large ∆E, alternative “reaction channels” become
accessible, but pathways resembling the MDP remain dominant. Both, exhaustive unbiased
sampling and the procedure described in section 2 converge to the same reactive subspace
(shown as coloured regions in panels B–F). See Figure S1 for a variant of this figure with
oversaturated colours that increase visibility of reaction channels.
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It should be noted that a decomposition of phase space into reactive and non-reactive sub-

spaces has been observed in earlier work and is even possible in the absence of an imposed

maximum reaction time tmax due to the presence of trapped orbits.44

4 Application to Molecular Systems: Sulfurochloridic

Acid

In order to study the MDP for a concrete molecular system, the dissociation of sulfurochlo-

ridic acid (HSO3Cl) into HCl and SO3 is considered for which a fully, 12-dimensional reactive

PES,23 constructed with the MS-ARMD method,18 is available. The transition state for the

HSO3Cl→ SO3 + HCl dissociation reaction lies ETS ≈ 31.5 kcal/mol above the energy min-

imum. Both, MEP and MDP for the reaction were constructed. Because phase space is now

much higher dimensional than for the Müller-Brown surface, it is not possible to compare

MEP and MDP by a simple projection onto the PES. To still be able to highlight differences,

the evolution of the distance d of the sulfur atom to the plane defined by the three oxygen

atoms (pyramidalization), as well as the distance between sulfur and chlorine atom rS−Cl,

is considered along with molecular structures sampled at a fixed interval (snapshots of the

trajectories), see Figure 3.

While both MEP and MDP display comparable overall movement, the MEP lacks important

dynamical information: In the MDP, the SO3 moiety oscillates between a pyramidal and a

planar arrangement, which suggests that this “umbrella motion” plays a key role in the

reaction (see d and rS−Cl in Figure 3). While it would be possible to guess the importance

of this mode from the MEP alone, the MDP reveals the order and time-scale when differ-

ent modes become active prior to the reaction and when they mix with other modes. This

is particularly relevant in the context of ultracold and controlled chemistry: For example,
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conformer-specific reactions have been investigated where, depending on the conformer and

the activating mode considered, the coupling to the remaining degrees of freedom changes

and therefore the reaction outcome depends on the means by which and the amount of en-

ergy deposited in the system.45 As such, the MDP provides time-resolved information into

the energetics and structural dynamics prior to the reaction when approaching the transi-

tion state. For example, the MDP in Figure 3 (upper panel) reveals that the S-Cl bond

(solid black for MDP and dashed blue for average over 100 reactive trajectories) breaks at

a later point in time during the reaction than the MEP would suggest (dashed red). In this

example, the MEP evidently only provides time-averaged information whereas the MDP

provides insight on how relevant modes communicate, i.e. the MDP is sensitive to the un-

derlying couplings as the system approaches the transition state. Consider for example the

pyramidalization d: Between progression coordinate 0.0 to 0.5, the value of d in the MDP

oscillates around an average value of 0.29 ± 0.25 Å, whereas reactive trajectories oscillate

on average around a mean value of 0.33 ± 0.20 Å. In the MEP on the other hand, d re-

mains constant at ∼ 0.37 Å. Similar observations can be made for the Müller-Brown PES,

where the MDP oscillates around the MEP (see Figure 2A). Such dynamics occurs on a time

scale (sub-picosecond) that should be amenable to state-of-the art, controlled experiments.46
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Figure 3: Evolution of distance rS−Cl of sulfur and chlorine atom and distance d of the sulfur
atom to the plane defined by the three oxygen atoms for the minimum dynamic path (MDP,
solid black line), averaged over 100 trajectories with excess energy ∆E = 5 kcal/mol above
the saddle point (average, dashed blue line) and minimum energy path (MEP, dashed red
line). This excess is an illustrative value but also is close to the zero-point energy of the
OH stretch vibration. For the MDP and the averaged results, the point in time at which
the trajectory crosses the separating hypersurface is set to zero and the time relative to the
crossing point is indicated. For the MEP, the notion of time is meaningless and relative
progression from start point (0.000) to end point (1.000) is indicated instead. The MEP
lacks important dynamical features that promote the reaction, e.g. the oscillation of the
SO3 moiety between a pyramidal (d > 0) and a planar (d = 0) structure. See also the
snapshots depicting the overall motion for both paths (top row: MDP; bottom row: MEP;
sampled at the intervals given on the x−axis). Note that on average, reactive trajectories
follow a motion comparable to the MDP. However, the oscillation period of d (and rS−Cl) is
shortened due to increased kinetic energy.

In order to verify that the umbrella motion - found to be an important degree of freedom in

the MDP - is also relevant in reactive trajectories with excess energy, 100 initial conditions

that lead to dissociation within 175 fs were run with an excess energy of ∆E = 5 kcal/mol,

see Section 2. MD simulations using a custom code were run with the velocity Verlet in-
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tegrator47 and a time step of 0.1 fs for a total of 2000 time steps. All these trajectories

follow a similar motion compared to the MDP prior to the elimination reaction (see Figure

3): Averaging all reactive trajectories exhibits the same oscillatory behaviour as is observed

for the MDP. For short time-scales (∼ 0.2 ps) prior to the reaction, it appears that reactive

trajectories all exhibit a similar “concerted” motion, at least for this particular case, and

that this coupling can be visualized and analyzed. Of course, the details of this observation

depend on the underlying PES.

For quantifying key aspects of the underlying motion, the total energy of the MDP trajectory

and the 100 reactive trajectories is decomposed into normal mode48 contributions. Table 1

reports the harmonic frequencies ω of all 12 normal modes corresponding to internal degrees

of freedom together with their associated motion.

Table 1: Normal modes of HSO3Cl in energetically ascending order. The first 6 normal modes
correspond to translational and rotational motions and are omitted. The corresponding
atomic displacements for each normal mode are shown as motion trace (H: white, O: red, Cl:
cyan, S: yellow) and normal mode frequencies for the optimized structure on the MS-ARMD
PES23 are reported.

# motion ω (cm−1)

7 258

8 317

9 325

10 384

# motion ω (cm−1)

11 510

12 523

13 555

14 814

# motion ω (cm−1)

15 1143

16 1176

17 1407

18 3773
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The normal mode decomposition analysis is performed as follows: Given Cartesian coordi-

nates x and corresponding momenta p for a specific snapshot, first, x and p are transformed

to the Eckart frame,49 which removes translational and rotational contributions. Next, the

potential and kinetic energies are separately projected onto normal modes. For the potential

energy, the normal mode coordinates q are calculated from x. Then, for every normal mode

i a new coordinate vector q̃i is generated, where all entries q̃ij 6=i are set to the equilibrium

values and q̃ii corresponds to the i-th entry of q. Finally, q̃i is transformed back to Cartesian

coordinates x̃i to obtain the contribution of the potential energy along a specific normal

mode i. The potential energy Ei
pot of normal mode i is then defined as

Ei
pot =

Epot(x̃
i)∑

iEpot(x̃i)
Epot(x) (3)

which ensures that the true potential energy Epot(x) of configuration x is divided exactly

among the normal modes, such that
∑

iE
i
pot = Epot(x).

For the kinetic energy, the velocities v derived from the momenta p are transformed to a

vector w in normal mode space in the same way x is transformed to q. Note that due to the

way the transformation into normal modes is defined, the entries wi of w correspond to the

“momentum” of each normal mode i divided by the square root of the associated effective

mass. The kinetic energy Ei
kin of normal mode i is defined accordingly as

Ei
kin =

w2
i∑
iw

2
i

Ekin(p) (4)

where Ekin(p) is the true kinetic energy according to the momenta p, which ensures that it

is divided exactly among the normal modes.

The total energy of a normal mode is then simply the sum of its kinetic and potential energy.

It should be noted that the method described above does not guarantee Etot =
∑

iE
i
kin+Ei

pot
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because of rovibrational coupling, which leads to some vibrational energy being unaccounted

for in the transformation to the Eckart frame. Nonetheless, the total energy is conserved

approximately and will fluctuate around a constant mean with a typical amplitude of < 0.1

kcal/mol, which is sufficient for the present purpose. Also, it should be noted that the

normal mode decomposition assumes a harmonic PES and is thus only strictly valid close

to the equilibrium geometry. When the normal mode decomposition is performed in highly

anharmonic regions, results can get distorted and should therefore always be considered with

care. Still, the decomposition provides a quantitative comparison of the relative importance

of normal modes between different trajectories. Note that other methods to decompose the

energy into normal mode contributions are possible.50,51
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Figure 4: Normal mode decomposition analysis of the total (kinetic and potential) energy
for reactive trajectories for HSO3Cl. For clarity, only the four modes with the highest
fluctuations are shown: (top panel) modes 13 (black) and 18 (red) and (bottom panel) modes
14 (blue) and 16 (orange). Modes 14 and 16 are the SOH bend and the SO stretch modes,
respectively. Trajectories reach the separating hypersurface at t = 0 fs. Solid lines indicate
the results for the minimum dynamic path (MDP), whereas dashed lines are averaged over
100 trajectories with a total energy corresponding to ∆E = 5 kcal/mol above the transition
state energy. Around t = −175 fs, modes 13 and 14 carry more energy than other modes.
Some of this energy is transferred to mode 16 during the next 100 fs. Between –75 fs and
–50 fs before the reaction, modes 14 and 16 start to lose energy, whereas mode 18 becomes
excited. Around t = −30 fs modes 13 and 18 contain by far the largest fraction of the total
energy (33% and 30% for the MDP, 34% and 20% for the averaged results). Note that while
it is difficult to directly correlate timepoints between MDP and the averaged results due to
a difference in kinetic energy of up to ∆E = 5 kcal/mol, both results show similar trends
and the dynamics of the energy flow between modes is comparable.

Figure 4 shows the normal mode energy decomposition for different times prior to the re-

action for the MDP and an average for an ensemble of 100 reactive trajectories. While the

MDP and the ensemble statistics differ slightly, they both follow qualitatively similar trends.
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Further, the analysis confirms that mode 13, which corresponds to an “umbrella motion” of

the SO3 moiety, and mode 18, which corresponds to the OH stretch vibration, are excited

prior to the reaction, a trend which could already be deducted from a visual inspection of

the MDP. Thus, the molecular picture that arises from this analysis suggests that energy

flows from other degrees of freedom into these modes, which promote dissociation. This is

consistent with a previous study which demonstrated that vibrationally induced photodisso-

ciation can be promoted via vibrational energy redistribution by exciting the -OH stretching

motion.23

5 Reactive Trajectories versus Vibrational Energy Re-

laxation

In order to test whether the insights about the reaction dynamics gathered from analysis

of the MDP are applicable in a more general context, the differences between non-reactive

and dissociative trajectories of HSO3Cl after OH-stretch overtone excitation were studied

using the normal mode decomposition scheme described earlier. The reactive MD simula-

tions (with the exception of using the velocity Verlet integrator47), were carried out along

the same lines as in the previous study.23 The change of the integrator was necessary to

allow a meaningful normal mode energy decomposition analysis.

Individual trajectories were started from a geometry optimized structure of HSO3Cl. The

system was heated to 300 K. The equations of motion were propagated using the leapfrog

Verlet algorithm with a time step of ∆t = 0.1 fs during 50 ps and equilibrated for 50 ps,

followed by 50 ps of free dynamics simulations.

Because the previous study indicated that the reaction time is on the nanosecond time scale

when five quanta of OH stretch are excited, the reactive MD simulations were run with the
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corresponding excitation energy of 50.5 kcal/mol.23 A total of 764 simulations were run with

a time step of ∆t = 0.1 fs for a maximum simulation time of 2.5 ns. Of those, a total of

205 directly dissociating trajectories (HCl elimination without prior H-transfer23), and 364

non-reactive trajectories (no HCl elimination and no H-transfer within 2.5 ns of simulation

time), were analysed. For both of these sets of trajectories, the total energy was decomposed

following the normal mode procedures outlined above.

Figure 5 shows the average normal mode energy for modes 13 and 18 for reactive and non-

reactive trajectories including fluctuations. The energy content and flow within and between

these modes does not differ for the two classes of trajectories when ensemble averages and

fluctuations around them are considered. Hence, contrary to the dynamics on the Müller-

Brown PES the initial conditions do not decompose phase space into two types of trajectories

that could be distinguished after initial preparation (here vibrational excitation), at least

when energy content in the participating modes is used to differentiate between them. This

is consistent with the intuitive notion that the fate of a trajectory - whether it leads to

reaction or not - is decided in the phase immediately before bond breaking occurs, see also

Figure 4. The reason for this is most likely the high dimensionality of phase space which

leads to mixed, chaotic dynamics (the Lyapnuov time52 for this system was determined to

lie between 2 and 5 ps).
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Figure 5: Average energy analysis for modes 13 (black - reactive; blue - nonreactive) and
18 (red - reactive; green - nonreactive) for 205 dissociative and 364 non-reactive HSO3Cl
trajectories after OH-stretch excitation.

6 Conclusion

The concept of an MDP was introduced, which is related to the MEP but includes dynamical

effects due to inertia. It was shown that the MDP resembles the dynamics of an ensemble

of reactive trajectories, thus providing valuable insight into the reaction dynamics of a sys-

tem of interest with a single trajectory. Further, a method was described which allows direct

sampling of reactive phase space, making the generation of reactive initial conditions for MD

simulations more efficient. The techniques were demonstrated for the 2-dimensional Müller-

Brown model system and a more realistic 12-dimensional reactive PES of sulfurochloridic
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acid. Conclusions drawn from the MDP about which modes promote dissociation in HSO3Cl

also hold for OH-stretch overtone induced photodissociation, which was confirmed by energy

decomposition analysis for reactive and non-reactive trajectories of HSO3Cl.

The techniques discussed here can also be applied to ab initio molecular dynamics simula-

tions in the gas phase. Because for an initial assessment of a particular reactive trajectory

between a given reactant and product state only one MDP simulation is required, it will

be possible to use high-level electronic structure theory methods (MP2 or even CCSD(T)

depending on system size) to obtain information about the participating degrees of freedom.

Similarly, applications to condensed phase systems, e.g. to investigate competitive ligand

rebinding53 or bimolecular reactions in solution54 should be possible to determine relevant

degrees of freedom accompanying the reaction. Once such active degrees of freedom are

known, they could be used to drive a chemical system by controlled excitation of the corre-

sponding motions.
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