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Abstract

Despite the ever-increasing computer power, accurate ab initio calculations for large

systems (thousands to millions of atoms) remain infeasible. Instead, approximate em-

pirical energy functions are used. Most current approaches are either transferable

between different chemical systems, but not particularly accurate, or they are fine-

tuned to a specific application. In this work, a data-driven method to construct a

potential energy surface based on neural networks is presented. Since the total energy

is decomposed into local atomic contributions, the evaluation is easily parallelizable

and scales linearly with system size. With prediction errors below 0.5 kcal mol−1 for

both, unknown molecules and configurations, the method is accurate across chemical

and configurational space, which is demonstrated by applying it to data sets from

nonreactive and reactive molecular dynamics simulations and a diverse database of

equilibrium structures. The possibility to use small molecules as reference data to

predict larger structures is also explored. Since the descriptor only uses local informa-

tion, high-level ab initio methods, which are computationally too expensive for large
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molecules, become feasible for generating the necessary reference data used to train

the neural network.
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1 Introduction

In 1929 Paul Dirac1 noted that the (electronic and nuclear) Schrödinger equation (SE) con-

tains all that is necessary to describe chemical phenomena and processes. As the underlying

equation (SE) is too complicated to be solved in closed form but for the simplest systems,

computational and numerical methods have been devised to find approximate solutions such

that meaningful information about a system and/or a process can be obtained. Depending

on the observable of interest, the meaning of “accuracy” may change, though. A total num-

ber of several ten thousand atoms is “large” from the perspective of what system size can

be realistically investigated at the single-point energy level using density functional theory

(DFT).2 With increasing accuracy, or when considering optimized structures, vibrations or

even (classical) nuclear dynamics, the size of the system that is computationally tractable by

explicitly solving the electronic SE (i.e. by “ab initio” rather than semiempirical methods)

reduces to less than thousand atoms.3 These limitations have spurred the development of

alternative, more empirical methods.

For small systems (few atoms) it is common practice to directly interpolate a set of known

and precomputed reference energies (obtained from a pointwise solution of the electronic

SE) to construct a continuous functional form. Popular interpolation techniques include the

modified Shepard algorithm,4–6 the moving least-squares method,7–9 permutational invariant

polynomials10–12 and the reproducing kernel Hilbert space method.13–16

For big systems (proteins or condensed matter) a typical approach is to fit a large number

(> 103) of parameters of an empirical functional form, a so-called force field (FF), either to

best reproduce reference energies, experimental data that can be derived from them (e.g.

thermodynamic or spectroscopic observables) or both.17 While some parameters can be de-

termined from experiment, others (e.g. partial atomic charges) require electronic structure

calculations for fragments or explicit molecular dynamics (MD) simulations (e.g. van der
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Waals parameters). Once parametrized, the total energy and corresponding forces required

for MD simulations can be evaluated much more efficiently than by directly (and approx-

imately) solving the SE.18,19 With currently available computer power it is, for example,

possible to run explicit atomistic MD simulations for small parts of a cell for several 100

ns.20 However, general empirical FFs21–25 also have a number of drawbacks,26 including their

limited accuracy, or the fact that most of them do not allow bond-breaking/bond-formation

to be described. Although it is now possible to parametrize a FF to within fractions of 1 kcal

mol−1 (for energies) for single, isolated systems and special potentials for metals,27–32 bond-

order based (reactive) potentials,33–36 and reactive force fields for particular systems37–41 or

processes (e.g. proton transfer),42 have become available, it would be desirable to generalize

this to larger classes of problems, irrespective of the particular type of application one has

in mind.

One possible step in this direction has been taken during the past decade when machine

learning (ML) approaches, which give computers the ability to learn without being explic-

itly programmed,43 have been applied to train a computer system using large amounts of

precomputed data (typically energies) to estimate properties for unknown compounds or

structures.44–47 Hence, instead of approximately solving the electronic SE or representing its

solution through a ball-and-spring model as in a FF, a computer system learns to predict

energies based on an increasing amount of data. Such an approach is motivated by the obser-

vation that the electronic Hamiltonian Ĥ is uniquely determined by the external potential,

which in turn depends only on the set of nuclear charges {Zi} and atomic positions {ri}

of the system. Therefore, all information necessary to determine E is contained in {Zi, ri}

and there must exist an exact mapping f : {Zi, ri} 7→ E, which returns the energy E given

{Zi, ri}. If the mapping f(Zi, ri) was known, directly solving the SE could be circumvented.

This situation is reminiscent of density functional theory (DFT) in that the existence of a

suitable functional is guaranteed but its actual form is not known. As such, the fundamental
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object of interest in the present work is the potential energy surface (PES), an approximation

to f : {Zi, ri} 7→ E, which corresponds to a 3N−dimensional hypersurface that returns the

total potential energy of a system Etot(ri) given the positions ri of all N nuclei.

Artificial neural networks (NNs)48–54 are a popular class of ML algorithms which have been

used to tackle various difficult problems, including speech,55 image56 and face recognition.57

In particular, feed-forward NNs have been proven to be general function approximators,58,59

which makes them suitable for approximating f : {Zi, ri} 7→ E. Ideally, the resulting PES

should be accurate, rapid to evaluate, analytically differentiable, systematically improvable,

scalable and applicable to bond-breaking/bond-formation problems (“reactive PES”). Addi-

tionally, it should be transferable between different systems and configurations.60 Existing

PESs typically fulfill only some of these requirements and the “ideal PES” does not exist

yet, probably due to the difficulty of finding a functional form that would satisfy all needs

simultaneously. In contrast, NNs do not assume a predefined functional form, and could

offer important advantages.

NNs have been used previously to fit PESs for molecular systems in the spirit of many-body

expansions.61–64 While being accurate, they typically involve a large number of individual

NNs (one for each term in the many-body expansion), making the method scale poorly for

large systems. Recently, there have also been efforts to predict bond energies using a NN.65

An alternative approach, known as high-dimensional NN (HDNN) and first proposed for

bulk silicon,66 decomposes the total energy of a system into atomic contributions, which is

appealing, because “energy” is an extensive property and it allows to apply the same network

to systems of different size. In an HDNN, an atomic descriptor vector (the “fingerprint for

the atomic environment”) is provided as input and yields the atomic energy Ei as output.

All atomic contributions are added to give the total energy Etot of the system for a particular
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configuration {ri}.

It is useful to introduce an atomic descriptor because the dimensionality of the input vector

xin needs to be fixed in a feed-forward NN and using Cartesian coordinates as input would

limit the applicability of the network to specific system sizes. The descriptor combines the

influence of all neighboring atoms up to a cutoff radius R (e.g. 6 Å)60 with a continuous

behaviour at the boundary. Introducing a cutoff allows the method to scale linearly with

respect to the number of atoms. Another disadvantage of using Cartesian coordinates is

that they are not invariant with respect to translation and rotation. Since NNs are purely

numerical algorithms, they would output different values if the input coordinates changed

due to such transformations of the system. In contrast, the descriptor is designed to be

identical for all symmetry equivalent representations by construction.

In an HDNN, the entries of the descriptor vector are the values of several so-called sym-

metry functions, which algebraically combine distances and/or angles between the atom of

interest and all other atoms in its neighborhood such that the resulting value is invariant

with respect to translation, rotation and permutation of equivalent atoms. The individual

symmetry functions are manually designed to respond differently to distinct combinations

of distances and/or angles, such that a sufficient number (≈ 50)66 of symmetry functions

provides a unique fingerprint for an atomic environment.60

Alternative methods to construct atomic environment descriptors as input for a NN based

on orthonormal 3-D Zernike basis functions67 or radial and angular distribution functions68

have been discussed in the literature. In contrast, the smooth overlap of atomic positions

(SOAP) approach69 directly introduces a distance metric and a similarity kernel for atomic

environments, such that it is not necessary to explicitly calculate the descriptor. Therefore,

the SOAP approach is more suited for kernel-based ML methods.70
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In order to apply HDNNs to multi-component systems,71 the symmetry functions are dupli-

cated for each species and a separate NN is trained for each element.60 Unfortunately, due to

the rapidly increasing complexity of chemical space, this approach is still limited to systems

containing only few chemical elements.72 Furthermore, such NNs are not transferable across

chemical space and have to be retrained for every new system of interest.

A conceptually different approach, the deep tensor NN (DTNN),73 allows to reuse the same

NN to predict energies of systems with different composition across chemical space. Similar

to HDNNs, the DTNN accumulates atomic energy contributions to predict the total energy

Etot. However, instead of an environment descriptor based on symmetry functions, it receives

a vector of nuclear charges and a matrix of atomic distances as input. A tensor layer74–76

then builds a coefficient vector ci for each atom i, which acts as the environment-dependent

fingerprint. To do so, the coefficient vector ci is initialized depending on the species of atom

i and recursively refined in T steps by adding interaction vectors vij, which depend on the

pairwise distance between atoms i and j 6= i, as well as the current cj of atom j. After T

refinements, the final ci is passed as input to a fully-connected layer to determine the atomic

energy contribution Ei of atom i.

Because each refinement step considers all pairwise distances, the evaluation of the DTNN

scales quadratically with respect to the number of atoms. Although introducing a distance

cutoff to achieve linear scaling has been proposed,73 it is important to note that even with

a cutoff, the network still requires information about all atoms present in the system in or-

der to recursively refine the coefficient vectors ci (every refinement step requires knowledge

about the current cj of other atoms). Using T = 3 interaction passes and 100k reference

structures, the DTNN predicts the energy of structures in the QM9 dataset77 accurately

with a mean absolute error (MAE) of 0.84 kcal mol−1.73
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More recently, the SchNet architecture was proposed,78 which improves upon the DTNN.

Instead of refining the coefficient vectors ci with a tensor layer, they are iteratively updated

by residual connections79 between three interaction blocks.78 The interaction blocks utilize

interatomic continuous-filter convolutions78 and fully-connected layers to couple different

coefficient vectors based on pairwise interatomic distances. The final coefficient vectors ci

are passed through two fully-connected layers, which output atomic energy contributions Ei.

Similar to the DTNN, SchNet requires information of all atoms present in the system to

update the coefficient vectors ci, even if a cutoff radius was introduced (the current version

of SchNet does not employ a cutoff).78 When trained on 100k reference structures, SchNet

predicts the energy of structures in the QM9 dataset77 with a MAE of 0.34 kcal mol−1. For

a more detailed description of SchNet, the reader is referred to ref. 78.80

Because both, DTNN and SchNet, require global information about all atoms in a system

for the iterative refinement of ci, individual atomic contributions cannot be evaluated in-

dependently without communicating intermediate results. While such approaches are the

method of choice for individual molecules or small systems, it might be difficult to apply

them routinely to condensed phase systems containing thousands of atoms with a multitude

of chemical environments such as in proteins.

In the present work, a NN-based method tailored for accurate energy evaluations, which

can be applied to construct PESs for nonreactive and reactive dynamics of chemically het-

erogeneous systems in the condensed phase, is introduced. While being inspired by high-

dimensional NNs, the descriptor does not rely on hand-crafted symmetry functions and

encodes atomic species and environment simultaneously, similar to the coefficient vectors ci

in the DTNN and SchNet. This allows to train a single NN to predict the atomic energy con-

tributions Ei of all elements in their chemical environments. In contrast, high-dimensional

8



NNs require separate NNs for each element. Contrary to iterative approaches based on tensor

layers73 or convolution,78 the descriptor contains strictly local information and is calculated

in a single step. Thus, the proposed method scales linearly with respect to system size and

can even be evaluated in parallel, because each atomic descriptor is independent of other

descriptors and needs no iterative refinement. When applied to the QM9 dataset,77 the

proposed approach yields predictions with errors below 0.5 kcal mol−1, transferable across

chemical space. The predictions are also transferable across configurational space, as is

demonstrated by applying the same method to several MD datasets.81 When trained with

appropriate reference data, the method is also able to describe reactions. By analyzing in-

dividual atomic energy contributions Ei, it is shown that the network predicts energies in a

chemically intuitive and interpretable way. Further, the possibility to train the network on

small molecules to predict the energies of larger systems is demonstrated. Finally, possible

future improvements are discussed.

2 Methods

In order to predict the energy of a system of interest, such as a molecule, a descriptor for each

atom is supplied to a NN, which predicts an atomic energy contribution Ei. The individual

contributions are added to obtain the total energy Etot. Figure 1 gives a schematic overview

of the computational protocol.

In the following, the atomic descriptor (section 2.1), the NN (section 2.2) and the process

for training the NN (section 2.3) are described in more detail. It is important to note that

only total energies are required as reference data during training, as the NN automatically

learns to perform the energy decomposition into atomic contributions. This way, only true

quantum mechanical observables are used as reference data and no, ultimately arbitrary,
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Figure 1: Schematic representation of predicting the energy Etot, of a chemical system. (a)
The local atomic environment of every atom i, consisting of its type (e.g. C, H, O, . . . )
and information about the relative positions rj and nuclear charges Zj of all neighboring
atoms j inside the cutoff sphere (indicated by a red circle), are encoded in a fixed-size
numeric descriptor vector ci. (b) Since the descriptor is rotationally, translationally and
permutationally invariant, all symmetry equivalent atoms are encoded in the same way. (c)
The descriptor vector ci is supplied to a NN, which (d) outputs an atomic energy contribution
Ei. Finally, the individual contributions are (e) accumulated to give Etot =

∑
iEi. Since

addition is commutative, Etot is automatically invariant with respect to atom permutations.
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energy decomposition scheme82–84 needs to be imposed.

2.1 Atomic descriptor

Individual atoms and their local environment are represented by a descriptor, which needs

to encode all information relevant to predicting its atomic energy contribution (relative po-

sitions and species of neighboring atoms). Further, due to the way feed-forward NNs are

designed (see section 2.2), the descriptor must be of fixed size, no matter how many atoms

are present. Finally, it is advantageous if the descriptor is invariant with respect to trans-

formations which do not alter the energy of the system. This way, translational invariance,

rotational invariance and invariance with respect to permutation of equivalent atoms need

not be learned explicitly by the neural network.

In this work, the atomic descriptor consists of two parts: one part encoding the atomic

species (C, H, O, . . . ) and a second part which encodes the local environment up to a cutoff

radius R. Note that an atomic descriptor that encodes species and environment separately

has been proposed previously.68 There are several reasons for introducing a cutoff. First, the

energy prediction scales linearly with respect to the number of atoms present in the system

of interest. Second, while the network can be trained on rather small systems, it can then

be applied to much larger systems, because locally, atomic environments of small and large

systems are equivalent. Finally, it is a valid assumption that most (but not all) chemical

interactions, which are relevant to the energy of the system, such as bonding, are inher-

ently short-ranged. Methods to correct for long-range interactions are well-known in the

literature60,66,71,72 and are discussed in section 3. Hence the descriptor used here combines

computationally advantageous aspects with a design based on physical/chemical principles.

Species descriptor. In principle, the atomic species could be encoded by a single number,

either by an integer identifier (e.g. H= 1, C= 2, N= 3, . . . ) or by the nuclear charge Z (e.g.
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H= 1, C= 6, N= 7, . . . ). However, this introduces an ordinal relationship (e.g. H < C <

N) between different atomic species, which can be detrimental to the network performance.

Since neural networks are a purely numerical algorithm, ordinal relations in inputs directly

correlate with the network response, which is not meaningful for atomic species. Alterna-

tively, a one-hot85 encoding (e.g. H = [1 0 0 · · · ], C = [0 1 0 · · · ], N = [0 0 1 · · · ]) would be

possible. However, two potential disadvantages of a one-hot encoding are that 1) the di-

mensionality of the encoding vector must necessarily be equal to the cardinality of the set

of atomic species present in the data and 2) all encodings are equidistant by construction.

Since, it is intuitive to expect e.g. atomic species from the same group in the periodic table

to behave similar to one another, an optimal encoding should be able to directly represent

these similarities.

For these reasons, the atomic species are rather encoded by embeddings. An embedding is a

mapping from a discrete object i to a vector of real numbers vi ∈ IRD, where D is the dimen-

sionality of the embeddings. For example, word embeddings86 find wide spread use in the field

of natural language processing. Here, words are mapped to a comparatively low-dimensional

vector space, such that semantically similar words (e.g. “red”, “green”, and “blue” or “king”,

“monarch” and “emperor”) appear close to each other (||vred − vblue|| < ||vred − vking||).

During the training process of the NN, the entries of the embedding vectors vi are free pa-

rameters, such that meaningful embeddings are directly learned from data. In this work,

the dimensionality D of the embeddings is set equal to the number Ng of distinct groups

(columns) in the periodic table which are present in the reference data. For example, in the

QM9 dataset, Ng is 5. Note that a lower dimensionality would still allow a unique encod-

ing of each element (albeit introducing an ordinal relation in the extreme case of D = 1).

However, elements from the same group in the periodic table are expected to have similar

properties and choosing D = Ng principally allows to encode every distinct group in or-

thogonal directions, thus avoiding ordinal relations between species. For more details on the
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concept of embeddings, the reader is referred to the literature.87

Environment descriptor. All information about the local environment of a given atom i

up to a cutoff radius R is contained in the neighborhood density function ρi given by

ρi(r) =
∑

j,‖rj‖≤R

Zjδ(‖r− rj‖) (1)

where the position r = (x, y, z)T ∈ R3 is relative to atom i, Zj and rj are nuclear charge and

relative position of neighboring atom j, δ is the Dirac delta function, and the sum runs over

all atoms j closer than R. The concept of a neighborhood density function has been used

previously in the derivation of the SOAP similarity kernel.69 Note that the use of relative

positions ‖r− rj‖ makes ρi translationally invariant and the commutativity of addition en-

sures permutational invariance. By construction, ρi is zero everywhere except for positions

rj of neighboring atoms j, where the function value encodes the atomic species of j by its

nuclear charge. Thus, ρi completely describes the local atomic environment of atom i up to

a distance R.

In order to obtain a fixed length input xin for use in a feed-forward layer, ρi is expanded into

a basis set of fixed dimension

ρi(r) ≈
K−1∑
k=0

L−1∑
l=0

l∑
m=−l

cklmψklm(r) (2)

with expansion coefficients cklm and basis functions ψklm(r) = gk(r;R)Ylm(θ, φ), where

gk(r;R) (with k ∈ [0, K − 1]) are radial basis functions and Ylm(θ, φ) are spherical har-

monics (with l ∈ [0, L − 1]). The Zernike descriptor67 also relies on a basis set expansion,

but uses different basis functions. K and L define the maximum degree of the radial and

angular parts of the expansion and R the cutoff radius, respectively. In order to be consistent
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with the commonly used notation of spherical harmonics, the Cartesian coordinate vector r

is transformed88 to spherical coordinates.

r = ‖r‖ =
√
x2 + y2 + z2

θ = arctan2(y, x)

φ = arccos

(
z√

x2 + y2 + z2

) (3)

Many different choices for the radial basis functions gk(r;R) are possible. Here

gk(r;R) = s(r;R) · exp

(
−K

2

R2

(
r − (k − 1)

R

K

)2
)

(4)

is chosen which ensures that basis functions are evenly spaced inside the cutoff sphere. Due

to the cutoff function s(r;R), gk(r;R) is zero whenever r > R. Choosing

s(r;R) =


1 if r ≤ rs

1− 6
(

r−rs
R−rs

)5
+ 15

(
r−rs
R−rs

)4
− 10

(
r−rs
R−rs

)3
if rs < r < R

0 if r ≥ R

(5)

as cutoff function, with rs = R − R
K

, ensures that gk(r;R) has smooth first and second

derivatives, such that no numerical artifacts are introduced when an atom enters or leaves

the cutoff-sphere, while leaving the Gaussian part of gk(r;R) largely unaffected (see Fig-

ure S1). The cutoff function s(r;R) is a smooth approximation to the step function and

influences the value of gk(r;R) only when r > rs. Although it would be possible to use a

non-sigmoid cutoff function that starts decaying as soon as r > 0, this would lead to largely

different numerical influences of gk(r;R) on the network predictions depending on the value

of k, therefore effectively introducing an a priori distance-based weighting. In contrast, the

present choice of s(r;R) allows that the NN learns to weigh the influence of different dis-

tances in a data-driven manner.
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As long as K and L are sufficiently large, the information stored in the coefficients cklm is

comparable to that encoded in ρi. Note that for predicting energies, some loss of information

is not problematic as long as the resulting descriptor can distinguish different environments

sufficiently well.

The expansion coefficients cklm for a general function f(r) can be obtained from projecting

cklm =
∫
f(r)ψklm(r)dr. Fortunately, it is not necessary to calculate an integral to obtain

the expansion coefficients for the neighborhood density function. Since ρi(r) is the sum of δ

functions (Eq. 1), the coefficients are efficiently obtained by summation

cklm =

∫
ρi(r)ψklm(r)dr =

∑
‖rj‖≤R

Zjψklm(rj) (6)

Note that the values of the coefficients cklm still depend on the orientation of the chosen

reference coordinate system, because the values of the 2l + 1 spherical harmonics for a par-

ticular l are orientation dependent. Fortunately, the 2l+ 1 coefficients for given combination

of k and l can be combined to a rotationally invariant quantity akl according to (Eq. 7).

akl =

(
4π

2l + 1

m=l∑
m=−l

(−1)mcklmckl−m

)1

2
(7)

In total, there are K ·L different akl values, which are concatenated to the atom embedding

vector v of dimensionality Ng to form the descriptor vector c. Because akl has contin-

uous first derivatives with respect to the atom coordinates, derivatives necessary for e.g.

force calculations are easily obtained by the chain rule. Note that because a single vector

c = xin ∈ RNg+K·L is supplied to the NN, it is not able to distinguish between species and

environment descriptor. In this work, K = 7, L = 7 and R = 3 Å are chosen for all datasets.

Section S1.1 details how the values of K, L and R were chosen and how they influence the
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predictive accuracy of the NN.

2.2 Neural Network

A feed-forward NN consists of an input layer connected to one or multiple hidden layers and

an output layer. Every layer can be considered as a function which takes an nin-dimensional

input vector x and transforms it to an nout-dimensional output vector y. For most NNs, the

transformation in each layer can be written as

y = φ(xW + b) (8)

where W is an nin×nout weight matrix, b is an nout-dimensional bias vector, and φ(x) is the

activation function. For simplicity, the shorthand notation φ(x) is used, which symbolizes

element-wise application of φ(x) to x (performed independently on each vector entry). All

entries of the weight matrix W and the bias vector b are free parameters, which are initial-

ized randomly and optimized when the network is trained.

The output y of each layer is the input x to the next successive layer until the output layer

is reached. Usually, the output layer uses the identity function as activation function and

its output yout is the prediction of the neural network (it is possible to predict more than

one quantity at once using the same network). The input layer applies no transformation to

its input data xin at all (the activation function is the identity function, W is the identity

matrix and the bias vector contains only zeros) and is only used to provide data for the first

hidden layer. The complete NN can therefore be written as a nested version of Eq. 8 with

different weight matrices Wi, bias vectors bi, and activation functions φi(x) for each layer
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i. For example, a NN with two hidden layers can be written as

yout = φout(φ2(φ1(xinW1 + b1)W2 + b2)Wout + bout) (9)

Note that it is not necessary to symbolically differentiate an expression such as Eq. 9 if

derivatives of yout with respect to xin (or any weight or bias parameter) are required. In-

stead, analytical derivatives are efficiently calculated using automatic differentiation.89 The

network architecture can be controlled by choosing different numbers of hidden layers and

nodes (“neurons”) in each hidden layer (specified by nout) and the choice of the activation

function (usually, the same activation function is used for all hidden layers). Commonly used

activation functions are either sigmoidal functions (tanh(x) or (1 + e−x)−1) or “rectifier”-like

functions (max(0, x) or ln(1 + ex)).90,91 Note that nout is the only hyperparameter for choos-

ing the size of the weight matrix and bias vector of each hidden layer, as nin is determined

by the previous layer’s nout, whereas the dimensionalities of yout and xin are dictated by the

problem at hand.

In the present work, square unit augmented layers92 given by

y = φ(xW1 + x2W2 + b) (10)

are used to construct the NN instead of ordinary layers (see Eq. 8). Here, x2 is shorthand

notation for the element-wise square of x. The independent weight matrices W1 and W2

are of size nin×nout and b and φ are bias vector and activation function, respectively (see Eq.

8). The reason for using square unit augmented layers is that properties reminiscent of radial

basis function networks93–95 can be included at little additional computational expense,92

provided that a sigmoidal activation function is used (see Figure S2 for an illustration).

The activation function for the hidden layers is φ(x) = s · arcsinh(x) where s = 1.25673480
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ensures that φ(x) has self-normalizing properties96 (activations converge automatically to

zero mean and unit variance), similar to the recently proposed SELU96 function. For the

output layer, the identity function is used. In the present work arcsinh(x) was found to give

superior results compared to more commonly used activation functions such as tanh(x). One

possible reason for the improved performance is that the function does not saturate for large

or small values of x (see Figure S2), which alleviates the vanishing gradient problem97 and

helps to improve learning.

In summary, the energy prediction consists of the following steps (see also Figure 1): 1)

The descriptor ci for a specific atom i with nuclear charge Z is generated by concatenating

the embedding vector vZ with the environment descriptor generated from the neighborhood

density (Eq. 1) of atom i (see section 2.1). 2) The descriptor ci is used as input xin for a

NN, which outputs the atomic energy contribution Ei. All NNs used in this work consist of

two hidden square unit augmented layers (Eq. 10) (see section 2.2) with 100 and 50 nodes

each. 3) Steps 1 and 2 are repeated for every atom i and the contributions Ei are summed

to give the total energy Etot.

2.3 Training

NNs are trained to predict energies on the QM9 dataset,77 several MD datasets81 and a

dataset for H-transfer in malonaldehyde. The QM9 dataset forms a subset of the GDB-17

database98 and contains 133,885 molecules consisting of H, C, N, O and F with up to 29

atoms, including up to 9 heavy atoms. The range of energies spans several thousand kcal

mol−1. All properties in the QM9 dataset were calculated at the B3LYP/6-31G(2df,p) level

of theory.77 The MD datasets consist of ab initio MD trajectories for benzene, uracil, naph-

thalene, aspirin, salicylic acid, malonaldehyde, ethanol and toluene calculated at the PBE

+ vdW-TS99,100 level of theory. They range in size from 150,000 to nearly 1,000,000 con-
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formational geometries.81 The H-transfer dataset for malonaldehyde was generated by sam-

pling 250,000 geometries from a 5 ns MD trajectory run at 750 K using CHARMM101 and

a molecular mechanics with proton transfer(MMPT)-based reactive force field.42,102 These

simulation conditions lead to ready hydrogen/proton transfer and constitute a set of reactive

geometries. The energy for each geometry was calculated at the MP2/6-311++G(d,p) level

of theory using Gaussian09103 and is used as reference.

Prior to training, each dataset is split into three parts: the training set, the validation set

and the test set. During training, the squared error per atom (SEpA)

SEpA =
1

N

(
Eref −

N∑
i=1

Ei

)2

(11)

is minimized via Adam optimization in minibatches104 of ten reference structures, using a

learning rate of 10−4. Eref is the reference energy of a structure from the training set, and Ei

are the predicted atomic contributions of the N atoms of the reference structure. During one

so-called epoch of training, the network trains once on each datum in the training set. After

each training epoch, the mean SEpA is also calculated for the structures in the validation

set. Every network is trained between 5500 to 10,000 epochs and the model which performs

best on the validation set is selected to predict the test set. As such, although the validation

set is not directly used in training, it indirectly influences which model is selected. This

method is also known as early stopping and is frequently used to prevent overfitting.92 Since

the test set is not used at all during the training process, the mean absolute error (MAE)

and root mean squared error (RMSE) of predictions on the test set indicate how well the

model generalizes to unknown data.

In order to speed up the training process and to improve convergence, all inputs (apart from

embeddings) to the network are transformed to their z-score105 according to mean and stan-
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dard deviation of the respective inputs in the training set. This ensures that the numerical

range of input values is close to the regions where the activation function is most responsive.

Note that all numbers needed for calculating the z-scores are constants that only depend

on the chosen training set and can be considered to be part of the descriptor. The trans-

formation to z-scores or similar normalization methods have only numerical reasons and are

standard practice when working with NNs.92

Similarly, instead of directly interpreting the output yout of the NN as atomic contribution

to the energy, Ei = σ · yout + µ is used instead, where σ and µ are additional scale and

shift parameters that are optimized during training. However, instead of initializing them

randomly like the other trainable parameters, they are initialized according to the standard

deviation (σ) and mean (µ) of the per-atom average of the reference energies in the training

set. Note that introducing σ and µ is redundant, because both, scaling and shift operations,

can already be equivalently expressed through the parameters in Wout and bout of the out-

put layer. However, networks are found to converge faster when σ and µ are introduced,

because a larger learning rate can be used due to the network predictions starting with the

correct range of values. After training is finished, it is possible to incorporate σ and µ di-

rectly into Wout and bout to save the additional computational step required by introducing

Ei = σ · yout + µ instead of simply choosing Ei = yout.

NNs are trained with Tensorflow106 using training set sizes of 1k, 2.5k, 5k, 10k, 25k, 35k,

50k, 75k and 100k for the QM9 dataset and training set sizes of 25k, 50k and 100k for the

MD and H-transfer datasets. In all cases, 2k additional structures are used as validation set,

whereas the remaining structures constitute the test set. For every training set size in the

QM9 dataset, five different NNs are trained based on a different, randomly chosen training,

validation and test set. This provides a means to obtain statistics on their performance.
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Further, to investigate whether the predictions of a NN also scale to larger systems, a single

network is trained on the QM9 dataset only on reference structures that contain 15 atoms

or less (26,328 structures). Out of the remaining structures, 2k are reserved as validation

set during training and the generalization error is estimated by predicting the energies of all

other structures in the QM9 dataset with more than 15 atoms.

3 Results and Discussion

3.1 Atomic energies

Since the NNs are trained to decompose energies of a system into atomic contributions, it is

instructive to visualize the “energy spectrum” for each atomic species in the QM9 dataset

(Figure 2).

The spectra are non-uniform and contain multiple peaks at well defined energies. Intuitively

one would associate different peaks to different clusters (“types”) of atoms, where atoms

in the same cluster are similar in energy Ei due to similar atomic environments. In order

to verify this hypothesis, atoms with similar environments are clustered based on chemical

graphs,108 where nodes correspond to atoms and edges represent bonds. Different atoms are

distinguished by a string (similar to a SMILES string109), which is obtained by concatenating

labels for all nodes encountered in a depth-first110 tree traversal of the chemical graph up

to depth two, starting from the atom of interest. The node labels consist of atomic species

and the number of edges to other nodes. Atoms with identical strings are assigned to the

same cluster. A more detailed description of the clustering method is available in section S4

of the SI.

In total, the QM977 dataset contains 1,230,122 H atoms, 846,557 C atoms, 139,764 N atoms,
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Figure 2: “Spectra” of atomic energies in the QM9 dataset for different species (relative to
the energy of a free atom). In order to obtain the spectra, the atomic energy predictions of
all five NNs trained on 100k structures were averaged and the curves are obtained by kernel
density estimation with the Sheather-Jones bandwidth selection method.107 Figures S7, S8,
S9, S10 and S11 show the respective unaveraged results. The atomic energies of C atoms
span the widest range (> 100 kcal mol−1), followed by N (> 60 kcal mol−1), O (> 40 kcal
mol−1), H (> 20 kcal mol−1) and F (> 15 kcal mol−1).
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187,996 O atoms and 3314 F atoms which reduces to 168 (H), 34,647 (C), 4271 (N), 1130

(O), and 22 (F) after clustering (for detailed results, see section S4). The large number of

different clusters is not surprising, considering the vast number of theoretically possible com-

binations for constructing bonding graphs of depth two, given five different atomic species

and diverse possible bonding patterns for each of them (see Table S1 for an illustration

of the exponential growth of possible combinations when traversing the bonding graph).

Interestingly, however, most atoms can be assigned to just a few clusters (see Figure S5).

For example, more than half of all C atoms belong to the 331 most common C-atom clusters.

Since only graph-based information (but no geometric information such as distances and

angles) is considered in the clustering approach, it is not evident that atoms belonging to

the same cluster are energetically similar. As a qualitative test for how meaningful the

clustering is, the cluster statistics (mean and variance of atomic energies for each cluster)

from the raw data is considered (see Figure 2). For this, every cluster is represented by a

Gaussian distribution with mean and variance equal to the corresponding cluster statistics,

and normalized according to the atom count. Even though assuming a Gaussian distribution

is a crude approximation, the sum of all Gaussians (see Figure S6) closely resembles Figure

2, so the graph-based clustering approach is considered to be meaningful.

In order to interpret the data, chemical similarities between different clusters are analyzed

and they are summarized based on functional groups into different atom types. Apart from

allowing interpretation of the network predictions, the energies of different atom types can be

tabulated and used for a rapid estimate of the energy of a molecule given only its chemical

structure, similar to how NMR-chemical shifts can be estimated.111 Table 1 lists atomic

energies (relative to a free atom) of functionally different C atom types.
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Table 1: Environment-dependent atomic energies of selected C atom types (mean plus or
minus one standard deviation).

type diagram E (kcal/mol)

hydrocarbyls

primary alkyl C
H

C

H
H

−101.8± 0.7

secondary alkyl C
C

C

H
H

−114.3± 4.8

tertiary alkyl C
C

C

C
H

−129.5± 6.3

quaternary alkyl C
C

C

C
C

−151.3± 5.9

primary alkenyl C

H

H

C −110.0± 6.2

secondary alkenyl C

C

H

C −128.6± 2.1

tertiary alkenyl C

C

C

C −150.2± 8.3

primary alkynyl CH C −112.5± 1.0

secondary alkynyl CC C −137.1± 3.0

secondary conjugated alkenyl C

C

C

H −134.0± 3.0

tertiary conjugated alkenyl C

C

C

C −156.9± 5.6

bound to nitrogen

methyl amine C
N

H

H
H

−108.6± 0.5

primary-C amine C
N

H

C
H

−120.2± 7.4

secondary-C amine C
N

H

C
C

−134.0± 8.1

tertiary-C amine C
N

C

C
C

−156.7± 7.1
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Table 1: Environment dependent atomic energies of selected C atom types. (continued)

type diagram E (kcal/mol)

nitrile C NC −144.0± 1.9

primary-C imine C

C

H

N −142.0± 2.2

secondary-C imine C

C

C

N −165.6± 3.7

bound to oxygen (may also be bound to nitrogen)

methoxy C
O

C

H

H
H
−110.3± 0.1

primary ether C
O

C

H

C
H
−126.8± 6.0

secondary ether C
O

C

H

C
C
−141.2± 8.4

tertiary ether C
O

C

C

C
C
−161.4± 7.5

primary hydroxyl C
O

H

H

C
H
−130.3± 1.3

secondary hydroxyl C
O

H

H

C
C
−149.3± 4.0

tertiary hydroxyl C
O

H

C

C
C
−168.0± 4.7

aldehyde C

H

C

O −146.0± 1.3

formyl amide C

H

N

O −161.6± 1.4

formyl ester C

H

OC

O −164.5± 1.1

ketone C

C

C

O −167.2± 2.3

amide C

C

N

O −184.1± 4.0

carboxyl ester/acid C

C

OCH/

O −188.9± 4.7

bound to fluorine
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Table 1: Environment dependent atomic energies of selected C atom types. (continued)

type diagram E (kcal/mol)

“aza-conjugated” fluoro C

C

N

F −181.1± 1.3

“oxy-conjugated” fluoro C

C

O

F −182.9± 1.5

“aza-aza-conjugated” fluoro C

N

N

F −188.0± 1.3

“aza-oxy-conjugated” fluoro C

N

O

F −192.9± 1.0

fluoro methyl C
F

C

F
F

−200.2± 0.5

Several trends can be observed: For pure hydrocarbyls, C atoms with a triple bond are more

stable than C atoms with double or single bonds, in accordance with the increased bond

strengths. An exception are conjugated sp2-hybridized C atoms, which are even more stable

due to their “aromatic” nature. When bound to electronegative atoms, such as N, O and F,

the stabilization energy of carbon atoms appears to be correlated with the electronegativity

of the bonding partner. A physically appealing interpretation is that a large difference in

electronegativity increases the ionic character of the bond and therefore increases the stabi-

lization energy.

While such trends may be obvious to chemists, a somewhat more subtle effect can be seen

in the increasing stability from primary to quaternary C-atoms. This can be explained by

hyperconjugation108 (electron density from occupied σ-bonds is donated to unoccupied or-

bitals, also known as the positive inductive or +I effect112). Such a resonance stabilization is

well known for carbocations and carbon radicals, which become more stable with increasing

number of neighboring alkyl groups. A related trend is found from chemical shift measure-

ments in 13C-NMR experiments, where typical shifts increase from 15-30 ppm, to 22-45 ppm
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and further to 30-58 ppm when going from primary to tertiary C-atoms.113 This is usually

attributed to the increased nuclear shielding due to the additional electron density around

the nucleus.

Similar observations are made for H, N, O and F atoms (see Tables S2, S3, S4 and S5).

Note that some of the previously discussed trends can be reversed for the other elements.

For example, instead of being stabilized by neighboring alkyl groups, O atoms typically are

destabilized by the +I effect. However, this is to be expected since O atoms are already

partially negatively charged due to their high electronegativity. The +I effect then leads to

an amplification of this charge and therefore destabilization.

3.2 Errors

QM9 dataset.77 Mean absolute errors (MAEs) and root mean squared errors (RMSEs) for

the NNs trained with different training set sizes are summarized in Table 2 and compared

with the performance of the DTNN73 and SchNet.78

The NN trained on 100k reference structures predicts structures in the QM9 dataset accu-

rately with a MAE of 0.41 kcal mol−1 and an RMSE of 0.86 kcal mol−1. Note that SchNet

has lower errors for larger training set sizes, but is outperformed by the present approach

for smaller training sets. Also, SchNet does not employ a cutoff radius R and therefore uses

significantly more information in its prediction. Figure 3 shows the convergence of MAE and

RMSE with increasing training set size.

While MAE and RMSE are useful measures for the overall performance of a method, it

can also be instructive to consider how errors are distributed. Figure 4 reveals that for all

training set sizes starting from 10k, more than half of all errors are below 0.5 kcal mol−1,
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Table 2: Prediction errors for the QM9 dataset. MAE and RMSE (given in kcal mol−1) on
the test set for different training set sizes. Results for this work and refs. 73 and 78 are
compared.

training set MAE RMSE

1000 1.85± 0.09 3.53± 0.57
2500 1.23± 0.03 2.45± 0.14
5000 0.95± 0.01 1.94± 0.10

10,000 0.73± 0.01 1.59± 0.08
this work 15,000 0.63± 0.01 1.40± 0.08

25,000 0.55± 0.01 1.22± 0.07
35,000 0.50± 0.00 1.06± 0.02
50,000 0.46± 0.01 0.98± 0.04
75,000 0.43± 0.01 0.89± 0.06

100,000 0.41± 0.00 0.86± 0.14
25,000 1.04± 0.02 1.53± 0.02

DTNN73 50,000 0.94± 0.01 1.37± 0.01
100,000 0.84± 0.02 1.21± 0.02
50,000 0.59 —

SchNet78 100,000 0.34 —
110,462 0.31 —

with most errors being as small as < 0.1 kcal mol−1. However, all distributions exhibit long

tails, which implies that there are rare but extreme outliers. The question remains whether

reasons for the outliers can be identified.

The energies of particular structures could be difficult to predict simply because they contain

rare atomic environments which are underrepresented in the training set. In order to quantify

how well a structure in the test set is represented by structures in the training set, the con-

cept of a representation number is introduced. For every structure, the relative frequency of

the atom clusters (see section 3.1) in the training set are combined via a harmonic average to

form the structure’s representation number. Structures with a small representation number

therefore contain one or several uncommon atomic environments, which the network could

not necessarily learn to predict accurately from the data it was presented during training.

Notable examples for such structures are very small molecules, including water, methane and

fluoromethane (all part of the QM9 dataset), which contain unique atomic environments not
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Figure 3: MAE (blue) and RMSE (red) depending on the size of the training set, aver-
aged over five independent runs per training set size. The error bars indicate one standard
deviation.

found in any other structure. For example, oxygen and hydrogen atoms in a water molecule

are chemically very different to oxygen and hydrogen atoms found in other hydroxyl groups.

This is highlighted by noting that the bond dissociation energy of an O-H bond in water is

119.2 kcal mol−1, whereas for a typical O-H bond in hydroxyl groups, it is only 102.3 kcal

mol−1.114 Similarly, the dissociation energy of C-H bond in methane is around 103.0 kcal

mol−1, compared with 113.0 kcal mol−1 for a typical C-H bond to a primary carbon.114 Fig-

ure S3 reveals that particularly large prediction errors occur almost exclusively for structures

with low representation number. However, low representation numbers do not necessarily

lead to large prediction errors. Since outliers follow the same patterns, it is possible to

systematically improve the prediction capabilities of the network for structures with a low

representation number by simply including appropriate reference structures in the training

set and it may even be possible to use the present approach for database curation and quality

tests of databases, which is essential for meaningful ML applications.
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While most outliers can be explained by underrepresented environments in the training data,

some of the largest prediction errors are probably due to a different reason. They belong to

a group of eleven molecules in the QM9 dataset for which the electronic structure calcula-

tion did not converge at all (three molecules) or only using loose convergence criteria (eight

molecules).77 Most of these structures feature unconventional chemical bonding and their

electronic structure potentially has multi-reference character. Therefore, it is possible that

the quantum mechanical reference energies themselves are erroneous for these structures, ex-

plaining the large prediction errors. At the very least, they seem to be particularly difficult

to predict for ab initio methods as well.

The ability of the NN to identify problematic structures can even be advantageous to detect

failures of the ab initio method used to obtain the reference energy and can be used to

automatically identify inconsistencies in a reference database. It might turn out that the

predictions by the network are closer to experiment than the reference values. Some of the

difficult-to-converge structures are shown in Figure 5 along with their average prediction

errors.

While the results with randomly chosen training sets are promising, it is interesting to see

whether representations learned from small structures can be used to predict energies for

larger structures. A NN trained on all structures in the QM9 dataset containing up to 15

atoms (26,328 structures) is able to predict structures with more than 15 atoms (107,557)

with a MAE of 1.01 kcal mol−1 and an RMSE of 1.69 kcal mol−1. The distribution of errors

is similar to the error distributions of networks trained with randomly chosen training sets,

but based on all molecules (with up to 29 atoms) (see Fig. S4). This demonstrates that

the learned representations are transferable and can be used to accurately predict larger

structures. Nonetheless, the performance is inferior compared to a randomly chosen training

sets drawn from the full data set. One possible physical explanation is that this is due to
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Figure 5: Structures (C = black, N = blue, O = red, H = white) with particularly large
prediction errors (in kcal mol−1) are shown along with their corresponding ID in the QM9
dataset. They all belong to a group of eleven molecules for which the reference electronic
structure was difficult to converge.77 The structures with the IDs 129158 and 117523 could
not be converged at all.77 Prediction errors are averaged across neural networks trained
on 100k reference structures (only NNs that contain a given structure in the test set were
considered). Note that, even though many of the structures contain a motif reminiscent
of 1,2,3-oxadiazole, the presence of this motif alone can not be the cause for the large
prediction errors: the QM9 dataset contains close to 1k structures with similar motifs, for
which accurate predictions are possible.
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the lack of an adequate description of long range interactions, which are more important

for extended structures containing many atoms. These deficiencies could be addressed by

explicitly including long range contributions into the prediction.

MD datasets.81 MAEs and RMSEs for the NNs trained with different training set sizes

are summarized in Table 3 and compared with results for gradient-domain machine learning

(GDML).81

Table 3: Prediction errors for the MD datasets. MAE and RMSE (given in kcal mol−1)
on the test sets are given for different training set sizes. Values in brackets are results for
gradient-domain machine learning (GDML).81 Note that the GDML approach uses different
reference data and training set size (see text).

molecule training set MAE RMSE

25,000 0.45 0.61
aspirin 50,000 0.34 (0.27) 0.44 (0.36)

100,000 0.27 0.35
25,000 0.11 0.14

benzene 50,000 0.10 (0.07) 0.13 (0.09)
100,000 0.09 0.12
25,000 0.21 0.30

ethanol 50,000 0.18 (0.15) 0.24 (0.20)
100,000 0.15 0.20
25,000 0.44 0.60

malonaldehyde 50,000 0.38 (0.16) 0.51 (0.25)
100,000 0.32 0.43
25,000 0.41 0.54

naphthalene 50,000 0.37 (0.12) 0.47 (0.15)
100,000 0.32 0.42
25,000 0.44 0.59

salicylic acid 50,000 0.37 (0.12) 0.48 (0.15)
100,000 0.32 0.42
25,000 0.45 0.60

toluene 50,000 0.40 (0.12) 0.52 (0.16)
100,000 0.35 0.46
25,000 0.30 0.40

uracil 50,000 0.24 (0.11) 0.31 (0.14)
100,000 0.20 0.26
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Predictions are accurate for all molecules and can be systematically improved by increas-

ing the training set size. Even though the present approach is outperformed by GDML in

some cases, it is important to keep in mind that GDML does not employ a spatial cutoff.

Therefore, it is questionable whether GDML scales well to larger systems. Further, while

the GDML models are trained on only 1000 structures, they use the atomic forces instead of

total energies as reference data, which enhances their predictive power.81 It has been shown

previously that NNs benefit as well from including forces in their loss function (see Eq. 11).78

Hence, it is likely that predictions from the NN could be further improved by including force

information during training.

H-transfer dataset. MAEs and RMSEs for the NNs trained with different training set

sizes for malonaldehyde are summarized in Table 4. The results show that accurate predic-

tions are possible with rather small training set sizes and can be systematically improved by

increasing the number of reference structures. Malonaldehyde has been used previously as

a model reactive system in machine learning applications for bypassing the solution of the

Kohn-Sham equations.115 Figure 6 shows a 10 ps MD trajectory of malonaldehyde. Note

that the NN approach automatically leads to a reactive PES. A direct comparison of the

NN-learned and MP2-reference energies yields a correlation coefficient of 0.997.

Table 4: Prediction errors for the H-transfer dataset. MAE and RMSE (given in kcal mol−1)
on the test sets are given for different training set sizes.

training set MAE RMSE

25,000 0.36 0.49
50,000 0.30 0.40

100,000 0.25 0.34
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Figure 6: First 10 ps of a MD trajectory of malonaldehyde with intramolecular H-transfer.
Top panel: Energy difference (absolute error) between MP2/6-311++G(d,p) reference ener-
gies and energies predicted by the NN trained on 100k reference structures. The error rarely
exceeds 1 kcal mol−1. Bottom panel: The solid black curve corresponds to the reference
energies, the dotted red curvecorresponds to the energies predicted by the NN. It is able to
describe transition geometries and geometries close to equilibrium structures equally well.
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4 Discussion and Conclusion

Although the results show that accurate predictions can be obtained from training a NN

with a descriptor based on encoding the chemical environment of an atom, it is useful to

discuss potential problems and possible improvements to the prediction method. For exam-

ple, even though introducing a cutoff radius R is necessary for computational efficiency, it

can limit the accuracy of the neural network. Since all atoms beyond the cutoff radius of

R = 3 Å are ignored in the descriptor by construction, interactions extending over larger dis-

tances can not be captured by the present approach. Most interactions relevant in chemistry

are sufficiently short ranged that this is not an issue, but there are important exceptions:

Coulomb and dispersion interactions. These long range contributions to the total energy

are especially important for the correct description of intermolecular interactions and are

therefore crucial for condensed phase systems. While it is always possible to increase R until

the error introduced by the cutoff is negligible, this is not very efficient, as a larger number

of atoms would need to be considered for the calculation of the expansion coefficients cklm

(see Eq. 1 and Eq. 6). Further, it is likely that higher order expansion terms (see Eq.

2) are necessary to resolve differences between atomic environments for larger R, such that

the calculation of the descriptor becomes more expensive. Fortunately, the physical laws

governing Coulomb and dispersion interaction are well understood, such that it is possible

to include both contributions explicitly without increasing the cutoff R.

For better describing Coulomb interactions, separately trained neural networks have previ-

ously been used116 to predict environment-dependent Hirshfeld charges.117 The electrostatic

contribution Eele is then simply subtracted from the total energy Etot prior to training net-

works for predicting the short range contributions. The total energy can be recovered by

combining electrostatic energies calculated from the predicted charges and the short range

contributions. Note that only charge-charge interactions are necessary for the calculation

of the electrostatic energy, as interactions between higher multipoles118,119 decay faster and
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can therefore be implicitly described in the short range contributions.60 In order to apply

a similar method to the approach presented in this work, it is not necessary to introduce

a second NN. Instead, the existing network could simply be trained to predict an atomic

energy contribution Ei and an environment dependent charge qi simultaneously, by intro-

ducing a second network output and an appropriate modification of the objective function

(Eq. 11). Also, it is not necessary to rely on a charge decomposition scheme such as Hir-

shfeld’s method117 to obtain a reference value for qi. Recently, it was shown that a NN can

be trained to predict environment dependent charges such that the electrostatic moments, a

true quantum mechanical observable, are reproduced.120 This way, no arbitrary decomposi-

tion scheme needs to be imposed.

To account for long range dispersion interactions, it was shown121 that the D3 scheme in DFT

calculations proposed by Grimme122 can be used for NNs without modification. Since the

neural network is trained on DFT reference energies, the standard C6 coefficients122 for cal-

culating the dispersion interaction can be reused. The possibility of predicting environment-

dependent C6 coefficients, instead of using constant values, should be pointed out. That

way the dispersion correction is more flexible and can adapt to the reference data. This

would require the introduction of another network output and a suitable modification of the

objective function (Eq. 11), similar to the possible treatment of Coulomb interactions.

Recently, it was shown that van der Waals interactions are essential for the understanding of

the properties of liquid water.123 These findings show the importance of a correct treatment

of long-range dispersion when studying condensed-phase systems.

In the present work a general atomic descriptor, which is applicable to any chemical system

was introduced. Using the descriptor as input, NNs trained on 100k reference structures can

learn to accurately predict energies of structures in the QM9 dataset77 across chemical space

with a MAE of 0.41 kcal mol−1. Although the performance is slightly worse than that of the
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SchNet architecture78 (MAE of 0.34 kcal mol−1), the difference in accuracy is considered to

be an acceptable trade-off for the increased computational efficiency, as the atomic descriptor

developed here requires only strictly local information (due to the introduction of a cutoff

radius R) and the network architecture is much simpler. This allows efficient calculation of

thousands of atomic contributions in parallel, which is an advantage in the context of a large

molecular dynamics simulation. For smaller training set sizes (e.g. 50k reference structures),

the method proposed in this work outperforms SchNet (Table 2). As such, fewer reference

calculations are needed to obtain chemical accuracy.

Since the QM9 dataset contains exclusively equilibrium structures it is only suited to assess

transferability across chemical space. In order to demonstrate the predictive power of a NN

across configurational space, the same method was also applied to data sampled from MD

simulations. Using 100,000 reference structures, MAEs between 0.09 and 0.35 kcal mol−1

were obtained (see Table 3). Finally, it was also demonstrated that this network can be used

to describe chemical reactions (here proton transfer), provided that appropriate reference

structures are included in the training set. The NN is able to describe intramolecular H-

transfer in malonaldehyde with a similar quality as high-level ab initio methods (Table 4).

The present approach is particularly suitable to evaluate accurate energies. In principle, it

also allows to efficiently evaluate forces as is required in molecular dynamics simulations.

In addition, the method automatically leads to a reactive PES (provided that appropriate

structures around the transition state are contained in the training set), as no notion of

chemical bonds is introduced in the construction of the atomic descriptor. In the present

work it was demonstrated that NNs trained on systems containing few atoms are transfer-

able to larger systems which facilitates the possibility to train networks using very accurate

ab initio reference energies. While they are typically slower than empirical force fields by

one to two orders of magnitude, the energy prediction is several orders of magnitudes faster
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than ab initio methods (the energy prediction of a system with 17 atoms takes < 1 ms on

on a desktop computer equipped with an Intel Xeon Processor E3-1275 at 3.40 GHz) and

scales linearly with respect to the number of atoms. On the same machine, training the

NN takes approximately three weeks and only needs to be performed once. Depending on

system size and level of theory, this is approximately the same time scale as a single ab initio

calculation. While FFs are still undisputedly the fastest approximate method, NNs promise

huge potential speedups and it might be feasible to combine the two to a hybrid approach

similar to QM/MM methods.

The atomic energy contributions predicted by the network are chemically intuitive and may

offer new insights. For example, they can be used as a guideline for designing novel types

of empirical force fields through atom typing based on quantitative information instead of

chemical intuition. Finally, it is possible to systematically improve the predictions of the

neural network by simply adding new reference data to the training set. As such, several

properties of an “ideal PES” as put forward in the introduction are fulfilled by the present

approach.

In order to use the present approach in MD simulations in a similar manner to FFs, an

appropriate reference dataset is necessary to train the NN. Ideally, this dataset should con-

tain a multitude of different chemical structures, representative of both, equilibrium and

non-equilibrium geometries. For a meaningful description of reactions, transition state ge-

ometries need to be included as well. Future work will focus on using the present technology

in conventional and reactive MD simulations together with a physically motivated treatment

of long range contributions to the energy. This is necessary to correctly describe the inter-

molecular interactions governing the dynamics in condensed phase simulations.
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