Dataset Open Access
Dhrubojyoti Roy; Sangeeta Srivastava; Aditya Kusupati; Pranshu Jain; Manik Varma; Anish Arora
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/34777dbb-edfa-4aff-ab40-22742fc9fe47/Original_Cuts.zip" }, "checksum": "md5:f38a6125517182c7445eeb76df73996d", "bucket": "34777dbb-edfa-4aff-ab40-22742fc9fe47", "key": "Original_Cuts.zip", "type": "zip", "size": 18603507 }, { "links": { "self": "https://zenodo.org/api/files/34777dbb-edfa-4aff-ab40-22742fc9fe47/Windowed_Data.zip" }, "checksum": "md5:91a59d06f4aca0dbb364c86f851793ed", "bucket": "34777dbb-edfa-4aff-ab40-22742fc9fe47", "key": "Windowed_Data.zip", "type": "zip", "size": 227556602 } ], "owners": [ 75664 ], "doi": "10.5281/zenodo.3451408", "stats": { "version_unique_downloads": 78.0, "unique_views": 979.0, "views": 1113.0, "version_views": 1116.0, "unique_downloads": 78.0, "version_unique_views": 982.0, "volume": 56900470406.0, "version_downloads": 318.0, "downloads": 318.0, "version_volume": 56900470406.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.3451408", "conceptdoi": "https://doi.org/10.5281/zenodo.3451407", "bucket": "https://zenodo.org/api/files/34777dbb-edfa-4aff-ab40-22742fc9fe47", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3451407.svg", "html": "https://zenodo.org/record/3451408", "latest_html": "https://zenodo.org/record/3451408", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3451408.svg", "latest": "https://zenodo.org/api/records/3451408" }, "conceptdoi": "10.5281/zenodo.3451407", "created": "2019-09-19T20:23:49.882490+00:00", "updated": "2020-01-24T19:24:50.538546+00:00", "conceptrecid": "3451407", "revision": 9, "id": 3451408, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.3451408", "description": "<p>This is the official dataset for the ACM BuildSys 2019 publication <em>One Size Does Not Fit All: Multi-Scale, Cascaded RNNs for Radar Classification.</em></p>\n\n<p>The training code for MSC-RNN can be found at <a href=\"https://github.com/dhruboroy29/MSCRNN\">https://github.com/dhruboroy29/MSCRNN</a></p>\n\n<p>Kindly cite this work as:</p>\n\n<pre><code>@inproceedings{roy2019one,\n\u00a0 title={One size does not fit all: Multi-scale, cascaded RNNs for radar classification},\n\u00a0 author={Roy, Dhrubojyoti and Srivastava, Sangeeta and Kusupati, Aditya and Jain, Pranshu and Varma, Manik and Arora, Anish},\n\u00a0 booktitle={Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation},\n\u00a0 pages={1--10},\n\u00a0 year={2019}\n}</code></pre>\n\n<p> </p>", "alternate_identifiers": [ { "scheme": "url", "identifier": "https://arxiv.org/abs/1909.03082" } ], "title": "Micro-power Pulse-Doppler Radar Clutter and Displacement Source Classification Dataset", "license": { "id": "CC-BY-SA-4.0" }, "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "3451407" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "3451408" } } ] }, "keywords": [ "recurrent neural network", "radar", "system on a chip", "sensor network" ], "publication_date": "2019-09-19", "creators": [ { "affiliation": "The Ohio State University", "name": "Dhrubojyoti Roy" }, { "affiliation": "The Ohio State University", "name": "Sangeeta Srivastava" }, { "affiliation": "University of Washington, Microsoft Research India", "name": "Aditya Kusupati" }, { "affiliation": "Indian Institute of Technology Delhi", "name": "Pranshu Jain" }, { "affiliation": "Microsoft Research India, Indian Institute of Technology Delhi", "name": "Manik Varma" }, { "affiliation": "The Ohio State University, The Samraksh Company", "name": "Anish Arora" } ], "meeting": { "title": "ACM BuildSys 2019" }, "access_right": "open", "resource_type": { "type": "dataset", "title": "Dataset" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.3451407", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 1,116 | 1,113 |
Downloads | 318 | 318 |
Data volume | 56.9 GB | 56.9 GB |
Unique views | 982 | 979 |
Unique downloads | 78 | 78 |