Conference paper Open Access

A Comparison of Approaches for Automated Text Extraction from Scholarly Figures

Böschen, Falk; Scherp, Ansgar


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="942" ind1=" " ind2=" ">
    <subfield code="a">2018-01-07</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Scholarly Figures</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Text Extraction</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Comparison</subfield>
  </datafield>
  <controlfield tag="005">20190410040749.0</controlfield>
  <controlfield tag="001">345104</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">04-06 January 2017</subfield>
    <subfield code="g">MMM2017</subfield>
    <subfield code="a">23rd International Conference on Multimedia Modeling</subfield>
    <subfield code="c">Reykjavik, Iceland</subfield>
    <subfield code="n">2A</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Kiel University and Leibniz Information Centre for Economics (ZBW)</subfield>
    <subfield code="a">Scherp, Ansgar</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">268796</subfield>
    <subfield code="z">md5:491fe99e667082902c708de885759075</subfield>
    <subfield code="u">https://zenodo.org/record/345104/files/2017-MMM-BoeschenScherp-TX.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://mmm2017.ru.is/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2016-12-31</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-ecfunded</subfield>
    <subfield code="p">user-moving-h2020</subfield>
    <subfield code="o">oai:zenodo.org:345104</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Kiel University</subfield>
    <subfield code="a">Böschen, Falk</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A Comparison of Approaches for Automated Text Extraction from Scholarly Figures</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ecfunded</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-moving-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">693092</subfield>
    <subfield code="a">Training towards a society of data-savvy information professionals to enable open leadership innovation</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;So far, there has not been a comparative evaluation of different approaches for text extraction from scholarly figures. In order to fill this gap, we have defined a generic pipeline for text extraction that abstracts from the existing approaches as documented in the literature. In this paper, we use this generic pipeline to systematically evaluate and compare 32 configurations for text extraction over four datasets of scholarly figures of different origin and characteristics. In total, our experiments have been run over more than 400 manually labeled figures. The experimental results show that the approach BS-4OS results in the best F-measure of 0.67 for the Text Location Detection and the best average Levenshtein Distance of 4.71 between the recognized text and the gold standard on all four datasets using the Ocropy OCR engine.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/978-3-319-51811-4_2</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
24
29
views
downloads
Views 24
Downloads 29
Data volume 7.8 MB
Unique views 23
Unique downloads 28

Share

Cite as