
Evaluation of genome assembly software based on
long reads

Laurent Bouri1,*, Dominique Lavenier2, Jean-François Gibrat3, and Victoria Dominguez
del Angel4

1CNRS Engineer/ IFB
2CNRS Research Director, GenScale team leader
3INRA Research Director/ IFB
4ELIXIR Training Coordinator (FRANCE)/ IFB

ABSTRACT

During the last 30 years, Genomics has been revolutionized by the development of first- and second-generation sequencing
(SGS) technologies, enabling the completion of many remarkable projects as the Human Genome Project1,2, the 1000
Genomes Project3 and the Human Microbiome Project4.
In the last decade, SGS technologies based on massive parallel sequencing have dominated the market, thanks to their
ability to produce enormous volumes of data cheaply. However, often genes and regions of interest are not completely or
accurately assembled, complicating analyses or requiring additional cloning efforts for obtaining the correct sequences5. The
fundamental obstacle in SGS technologies for obtaining high quality genome assembly is the existence of repetitions in the
sequences. A promising solution to this issue is the advent of Third-generation sequencing (TGS) technologies based on long
read sequencing6.
TGS technologies have been used to produce highly accurate de novo assemblies of hundreds of microbial genomes7,8, and
highly contiguous reconstructions of many dozens of plant and animal genomes, enabling new insights into evolution and
sequence diversity9,10. They have also been applied to resequencing analyses, to create detailed maps of structural variations
in many species11. Also, these new technologies have been used to fill in many of the gaps in the human reference genome12.
In this report, we compare and evaluate several genome assembly software based on TSG technology. The experimentation
has been performed on 4 reference genomes and the results evaluated with the QUAST software. The 11 software that have
been evaluated are: Celera Assembler13, Falcon14, Miniasm15, Newbler16, SGA Assembler17, Smartdenovo18, Abruijn19,
Ra20, DBG2OLC21, Spades22 and Cerulean23. The first 8 software use only long reads, while the 3 last software can merge
long and short reads

Keywords: Third-generation sequencing, Pacific Biosciences (PacBio), Oxford nanopore MinION, De novo assembly

Contents

1 Introduction 3
1.1 Background . 3
1.2 Evaluated assemblers . 3

LRO assemblers (Long Read Only) • SLR Assemblers (Short and Long Read)

2 Method 4
2.1 Evaluated genomes . 4
2.2 Datasets . 4
2.3 Hardware resources . 4
2.4 Long reads correction . 5
2.5 Evaluation of assemblies . 5

3 LRO assemblers (Long Read Only) 6
3.1 Celera Assembler . 6
3.2 Falcon . 7
3.3 Miniasm . 9
3.4 Newbler . 10
3.5 SGA Assembler . 11
3.6 Smartdenovo . 12
3.7 Abruijn . 12
3.8 Ra . 13

4 SLR assemblers (Short and Long Read) 15
4.1 DBG2OLC . 15
4.2 Spades . 16
4.3 Cerulean . 18

5 Results 20
5.1 Evaluation of assembly . 20
5.2 Benefit of long reads in hybrid assembly . 20
5.3 Testing Data Sets . 21
5.4 Test 1: Acinetobacter sp, ADP1, run5; Minion 10x . 22
5.5 Test 2: Acinetobacter sp, ADP1, run6; Minion 20x . 23
5.6 Test 3: Escherichia coli k-12, reads Pacbio 10x (P4-C2) . 24
5.7 Test 4 : Escherichia coli k-12, reads Pacbio 100x (P4-C2) . 25
5.8 Test 5: Escherichia coli k-12, reads Pacbio 10x (P6-C4) . 26
5.9 Test 6: Escherichia coli k-12, reads Pacbio 100x (P6-C4) . 27
5.10Test 7: Escherichia coli k-12, Minion 20x . 28
5.11Test 8: Saccharomyces cerevisae W303, Pacbio reads 10x (P4-C2) . 29
5.12Test 9: Saccharomyces cerevisae W303, Pacbio reads 100x (P4-C2) . 30
5.13Test 10: Saccharomyces cerevisae W303, ONT reads 20x . 31
5.14Test 11: Caenorhabditis elegans, Pacbio reads 10x (P6-C4) . 32
5.15Test 12: Caenorhabditis elegans, Pacbio reads 100x (P6-C4) . 33

6 Discussion 34
6.1 LRO assemblers . 34
6.2 SLR assemblers . 35

7 Conclusion 36

References 37

2/38

1 Introduction

1.1 Background

The TGS technologies developed by the Pacific Bioscience (PacBio) and Oxford Nanopore Technology (ONT) companies
are able to produce distributions of read lengths having a median greater than 10,000 bp and whose longest lengths are about
50,000 bp that are very useful to improve genome assembly. Indeed, such long reads allow the method to encompass most
of the repetitive regions of the genome. However, these long reads exhibit 10% to 15% sequencing error rates, requiring a
preliminary stage of correction before the assembly process.

There are two main families of assemblers based on long reads :

• Long Reads Only assembler (LRO);

• Short and Long Reads combined assembler (SLR).

LRO Assemblers take only long reads as inputs. SLR Assemblers require both long and short reads.

Some LRO assemblers require corrected long reads as input. Several software to correct long reads, based on two strategies, are
available. The first strategy consists of aligning long reads against themselves. The second one uses short reads to correct long
reads.

This report aims to provide a guide for helping researchers to choose the best assembly software considering:

• the coverage rate of the long reads dataset;

• the availability and quality of supplementary short reads

• the length of the genome to be assembled

We include details for each protocol to facilitate the computational reproducibility for each software approach.

1.2 Evaluated assemblers

1.2.1 LRO assemblers (Long Read Only)

Eight de novo assemblers are listed below. Clearly, assembler software prefer previously corrected long reads as input. However
most of them can also accept non corrected reads (Table 1). Falcon is the only assembler to have an integrated correction
module that can be bypassed.

Assemblers Accept non corrected
reads as input

Celera no
Falcon yes

Miniasm yes
Newbler no

SGA no
Smartdenovo yes

Abruijn yes
Ra yes

Table 1: List of de novo long reads assemblers and whether they can use non corrected long reads.

In general, these assemblers are based on the Overlap-Layout-Consensus (OLC) algorithm. First, this algorithm produces
alignments between long reads, then it calculates the best overlap graph and finally it generates the consensus sequence of the
contigs from the graph.
Obviously, the lower the sequencing error rate the more efficient the algorithm.

1.2.2 SLR Assemblers (Short and Long Read)

Until now, 3 hybrid assemblers have been proposed:

• DBG2OLC

• Spades

3/38

• Cerulean

Schematically, assembly pipelines that use both long and short reads generate a pre-assembly (production of contigs) using
short reads, then the long reads are used to improve the pre-assembly by closing gaps, resolving repetitive regions,...

2 Method

2.1 Evaluated genomes

Genome name Number of chromosomes length

Acinetobacter DP1 1 chromosome 3 650 030 pb
Escherichia Coli K12 MG1655 1 chromosome 4 641 652 pb
Saccharomyces Cerevisae W303 16 chromosomes 11 633 571 pb
Caenorhabditis elegans 6 chromosomes 100 272 607 pb

Table 2: The reference genomes used in this report.

2.2 Datasets

The table below shows the 4 reference genomes and the datasets (short and long reads) used for this evaluation :
Genome length (M bp) Test Minion (ONT) PacBio Illumina

Acinetobacter 3.9 M 1 10x, 2D, 3.4K reads 211K reads
2 20x, 2D, 10K reads 211K reads

E.Coli 4.6 M 3 10x, P4C2, 36K reads 11M reads
4 100x, P4C2, 91K reads 11M reads
5 10x, P6C4, 8.7K reads 11M reads
6 100x, P6C4, 87K reads 11M reads
7 20x, 2D, 22K reads 11M reads

S. Cerevisa 11.6 M 8 10x, P4C2, 26K reads 3.8M reads
9 100x,P4C2, 261K reads 3.8M reads
10 20x, 2D, 47K reads 3.8M reads

C. Elegans 100 M 11 10x, P6C4, 92K reads 55M reads
12 100x, P6C4, 740K reads 55M reads

Table 3: The datasets used in this report. These datasets provide longs reads from Oxford Nanopore technology or Pacbio
Science or Illumina short reads.
The available Pacbio datasets have coverage rates from 10x to 100x. inaddition, 2 Pacbio sequencing techniques have been
tested, the older polymerase and chemistry P4C2 to the newer P6C4 version. Tested ONT long reads are 2D reads, meaning
that they are consensus sequences of both forward and reverse strands generated from the Minion device. Minion and Pacbio
assembly cannot be directly compared as they don’t have the same coverage in the datasets. Notice also that no Pacbio dataset
has been tested for the assembly of the Acinetobacter genome.

2.3 Hardware resources

Software evaluations were done on the Genouest platform cluster https://www.genouest.org/cluster.

Assembler Number of threads

Celera Assembler 8
Falcon 2 à 24
Miniasm 16
Newbler 1
SGA assembler 1
Smartdenovo 1
Abruijn 1
Ra 1
DBG2OLC 1
Spades 16
Cerulean 8

4/38

https://www.genouest.org/cluster

Table 4: Number of threads used for each software.

Cluster node configuration:

• Number of CPU: 40

• CPU frequency: 2.6 GHz

• RAM available: 256 Gb

2.4 Long reads correction

As some assembly software have an integrated correction step (Falcon) and some assemblers do not accept non corrected
long reads (Celera assembler, Newbler and SGA), raw long reads must be previously corrected with a unique correction tool.
Furthermore, when it is possible, the correction module integrated to the assembly software is bypassed. So, before each
assembly, the LoRDEC software24 is used to correct long reads. LoRDEC constructs a de Bruijn graph from the short reads and
produces a long corrected read, based on an optimal graph path.

2.5 Evaluation of assemblies

The software QUAST25 (QUality ASsessment Tool) has been used. It evaluates the assembly by calculating various metrics
such as the number of contigs, the total length of the assembled genome, the N50 and the fraction of the reference genome
found among the contigs. This fraction is deduced by aligning the assembled genome with the reference genome using the
MuMmer26 software.

5/38

3 LRO assemblers (Long Read Only)

3.1 Celera Assembler

Introduction

Celera Assembler is an assembler using the OLC algorithm, originally developed to produce assembly from Sanger data. It
now supports long reads and 454 technology. Canu is a fork of the Celera Assembler, designed for high-noise single-molecule
sequencing as Pacbio or ONT.

Website : http://wgs-assembler.sourceforge.net

Installation

Celera Assembler Celera Assembler can be downloaded as a source code to install or as precompiled binaries.

Compilation and installation of the source code:

$ bzip2 -dc wgs-8.3rc2.tar.bz2 | tar -xf
$ cd wgs-8.3rc2
$ cd kmer && make install && cd ..
$ cd src && make && cd ..
$ cd ..

Extraction of pre-compiled binaries files:

$ bzip2 -dc wgs-8.3rc2-*.tar.bz2 | tar -xf

Input data

Celera Assembler requires a fragment file (.frg) and an optional .spec file that launches the Celera Assembler pipeline. Some
programs as fastatoCA and fastqtoCA are available in the WGS package to convert any common FASTA or FASTQ file to a
fragment file (.frg). Converting a FASTA file requires not only the sequence file but also a FASTA quality file:

fastaToCA -l libraryname -s seq.fasta -q qlt.fasta > seq.frg

· l : library name

· s : sequence in FASTA format

· q : FASTA quality file

fastqToCA -libraryname LIB -technology pacbio-corrected -reads seq.fastq > seq.frg

· libraryname : library name

· technology : data type (pacbio, Illumina, 454,...)

· reads : FASTQ file

Pipeline

The runCA script divides the assembly pipeline in 9 stages. Each of these stages creates files in dedicated folders. First, Celera
Assembler checks all input data for errors and load the valid data into the gkpStore database. From each fragment, a histogram
of the kmer frequency is generated. The value from which a k-mer seed becomes non-informative and the depth of coverage are
calculated. Then, multiple alignments are executed in order to correct any sequencing errors left and the best overlap graph
is generated. Finally, The consensus sequences of the contigs are deduced from the graph and Celera Assembler ended by a
scaffolding step.

runCA -d directory -p prefix -s specfile <option=value> ... <input-files>

· d : folder name to output results

· p : prefix used to create output filename

· s : optional .spec file

6/38

http://wgs-assembler.sourceforge.net

Encountered errors

Overlap job /root/wgs/Linux-amd64/bin/results/1-overlapper/001/000001
FAILED. 1 overlapper jobs failed

solution : change the merSize option to reduce the seed lenght used by the seed and extend algorithm.

1 unitig consensus jobs failed;
remove /root/wgs/Linux-amd64/bin/results5/5-consensus/consensus.sh to try again

solution : delete the file consensus.sh, then retry.

BEGIN failed–compilation aborted at
/data/bill.crosby/apps/wgs-8.3rc1/Linux-amd64/bin/caqc.pl http://caqc.pl/; line 18

solution: Install the perl module Statistics::Descriptive : sudo cpan Statistics::Descriptive

Output data

The Celera Assembler output consists of 9 folders, an ASM file, containing the precise description of the assembly with the
generated scaffold sequences and a quality control file, providing statistics on the assembly. The QC file retains informations
about generated scaffold (N50,...), long reads (quantity,...) and contigs (gaps quantity,...).

The ASM file is the Celera Assembler native output format. It can be converted in a fasta file format. To do so, the
WGS-assembly package provide a script named asmOutputFasta:

asmOutputFasta -p prefix < output.asm

3.2 Falcon

Introduction

Falcon is an assembler using reads from Pacbio and ONT. Long reads are aligned against themselves to build consensus
sequences that are subsequently used to generate the genome assembly. Falcon is advertised as an assembler of diploid genomes.
It is advisable to have a coverage of 100x of Pacbio or ONT reads for a de novo assembly.

Website: https://github.com/PacificBiosciences/FALCON

Installation

Falcon can be downloaded as a source code to be installed. It requires a Sun Grid Engine environment. The installation requires
gcc (4.8.3+) and python (2.7+). FALCON-integrate is an integration package for FALCON and its dependencies (DALIGNER,
DAZZ DB, pypeFLOW,...)

Create a virtual Python environments and activate it:

$ FC=fc_env
$ virtualenv -no-site-packages -always-copy $FC
$. $FC/bin/activate

Download and install Falcon and its dependencies:

$ git clone git://github.com/PacificBiosciences/FALCON-integrate.git
$ cd FALCON-integrate
$ git submodule update --init
$ cd pypeFLOW
$ python setup.py install
$ cd ..
$ cd FALCON
$ python setup.py instal
$ cd ..

7/38

https://github.com/PacificBiosciences/FALCON

$ cd DAZZ_DB/
$ make
$ cp DBrm DBshow DBsplit DBstats fasta2DB $FC/bin/
$ cd ..
$ cd DALIGNER
$ make
$ cp daligner daligner_p DB2Falcon HPCdaligner LA4Falcon LAmerge

LAsort FC/bin
$ cd ..

Input data

Falcon needs a configuration file named ”fc run.cfg”, listing command lines to be executed, on which node in the cluster, with
which resources and with which data. Here is an exemple of Falcon configuration file:

[General]
\#job_type = local

\# list of files of the initial bas.h5 files
input_fofn = input.fofn
\#input_fofn = preads.fofn

input_type = raw
\#input_type = preads

\# The length cutoff used for seed reads used for initial mapping
length_cutoff = 12000

\# The length cutoff used for seed reads usef for pre-assembly
length_cutoff_pr = 12000

jobqueue = your_queue
sge_option_da = -pe smp 8 -q %(jobqueue)s
sge_option_la = -pe smp 2 -q %(jobqueue)s
sge_option_pda = -pe smp 8 -q %(jobqueue)s
sge_option_pla = -pe smp 2 -q %(jobqueue)s
sge_option_fc = -pe smp 24 -q %(jobqueue)s
sge_option_cns = -pe smp 8 -q %(jobqueue)s

pa_concurrent_jobs = 32
ovlp_concurrent_jobs = 32

pa_HPCdaligner_option = -v -dal24 -t16 -e.70 -l1000 -s1000
ovlp_HPCdaligner_option = -v -dal24 -t32 -h60 -e.96 -l500 -s1000

pa_DBsplit_option = -x500 -s200
ovlp_DBsplit_option = -x500 -s200

falcon_sense_option = --output_multi --min_idt 0.70 --min_cov 4
--local_match_count_threshold 2 --max_n_read 200 --n_core 6 --output_dformat

overlap_filtering_setting = --max_diff 100 --max_cov 100 --min_cov 20
--bestn 10 --n_core 24

The parameters ”input-fofn” and ”jobqueue” must be filled in before launching a job on a node of the cluster. The file with the
”.fofn” extension contains, in each line, a path to the dataset of long reads to assemble (FASTA file). Lastly, if the parameter
”input-type” from the configuration file is set to ”preads” instead of ”raw”, Falcon will consider that the long reads have already
been corrected.

8/38

Pipeline

Make sure virtualenv is activated, then execute the next command line in order to launch the Falcon assembler:

$ fc_run.py fc_run.cfg

The Falcon pipeline is divided in the following stages :

· Raw sub-reads overlapping for error correction (DALIGNER)

· Pre-assembly and error correction

· Overlapping detection of the error corrected reads

· Overlap filtering

· Constructing graph from overlaps

· Constructing contig from graph

Encountered errors

fasta2DB: Could not find file

Solution : grant access right to fasta2DB.

Pacbio header line name inconsistent

Solution : Use a script to change the header and make them look like header from pacbio data.

Output data

The folder ”2-asm-falcon” holds data about the graph and the contigs generated from the assembly. The final assembly can be
found in the file ”p-ctg.fa”.

3.3 Miniasm

Introduction

Miniasm is an assembler based on the OLC algorithm. Miniasm is able to generate a genome assembly from Pacbio or ONT
long reads, corrected or not, in a short period of time. It is worth mentioning that Miniasm pipeline does not contain a consensus
stage. It simply concatenates pieces of read sequences to generate the final unitig sequences. Thus the per-base error rate is
similar to the raw input reads.

Website : http://github.com/lh3/miniasm

Installation

Miniasm can be downloaded as source code:

$ git clone https://github.com/lh3/minimap && (cd minimap && make)
$ git clone https://github.com/lh3/miniasm && (cd miniasm && make)

Input data

Miniasm needs the file containing the alignment data (”.paf.gz” file extension), generated by Minimap. Minimap accept FASTA
and FASTQ file.

9/38

http://github.com/lh3/miniasm

Pipeline

First of all, Minimap find approximate mapping positions between the long reads. Then, Miniasm uses the file generated by
Minimap to build an assembly graph in a file with extension ”.gfa”.

$ minimap/minimap -Sw5 -L100 -m0 -t8 reads.fq reads.fq | gzip -1
> reads.paf.gz

· S : Do not take into account reads that map against them

· w : Minimizer window length

· L : Minimal match length

· m : merge two strings if the given percentage is shared between minimizer

· t : Number of threads

$miniasm/miniasm -f reads.fq reads.paf.gz > reads.gfa

Output data

Finally, the following AWK script allows to convert the ”.gfa” file to a FASTA file format :

$ awk ’/ˆS/{print ">"$2"\n"$3}’ input_file.gfa | fold > output_file.fa

3.4 Newbler

Introduction

Newbler is a set of scripts specifically designed for assembling data generated by 454 pyrosequencing platforms (454 Life
Sciences).

Website : http://www.454.com/products/analysis-software/

Installation

In order to download Newbler binary files, a link must be requested on the website by filing out a form. Then download and
extract the file ”gsNewbler-2.9-1x8664.rpm”.

Input data

Newbler does not accepts reads larger than 2000 bp. Reads whose size exceeds 2000bp must be truncated while maintaining a
maximum of overlap between the sequences (500 bp overlap length).

Pipeline

First, the project must be created :

$ newAssembly projectname

Then, Truncated long reads can be loaded in a new project :

$ addRun -lib minion projectname run_minion.fasta

Lastly, the following command line launch the assembly :

$ runProject -mi 96 -ml 60 -sl 22 projectname

· mi : minimum percentage of identity

· ml : minimum overlap length

· sl : seed length

10/38

http://www.454.com/products/analysis-software/

The first phase of the assembly consists in finding overlaps between the reads. First, Newbler produces 16-mer seeds for each
read. When Newbler finds an overlap between two reads, it extends the overlap between the reads up to a minimum size
(40bp by default), with a minimum percentage of identity (90 by default). Newbler then create a graph, and finally extract the
contigs.

Newbler can also be executed with one command line:

$ runAssembly -o projectname -mi 96 -ml 60 -sl 22 run_minion.fasta

Output

The output folder contains the generated genome assembly in a file named ”454AllContigs.fna”.

3.5 SGA Assembler

Introduction

SGA is based on the ”string graph” of Gene Myers and uses the Burrows-Wheeler Transform/FM-index to find overlaps between
reads.

Website : https://github.com/jts/sga

Installation

SGA assembler requires installation of the following dependencies :

· google sparse hash library (http://code.google.com/p/google-sparsehash/)

· the bamtools library (https://github.com/pezmaster31/bamtools)

· zlib (http://www.zlib.net/)

SGA installation :

$ git clone https://github.com/jts/sga.git
$ cd sga/src
$./autogen.sh
$./configure {with-sparsehash=<chemin vers sparsehash>

--withbamtools=<pathway to bamtools>
--prefix=<pathway to SGA install folder> && make && make install

Input data

SGA assembler accepts long reads in FASTA or FASTQ format.

Pipeline

SGA assembler is divided in 6 stages :

1. A preliminary step to assembly, removing reads containing letters other than ATGC

2. The construction of an FM-index from the file in Fasta or Fastq format

3. The correction of long reads based on overlaps

4. The removing of duplicated reads

5. The construction of a ”String Graph” from the identified overlaps between reads

6. Assembly from the graph created in the previous step.

$./sga preprocess reads.fasta
$./sga index -a ropebwt reads.fasta
$./sga correct reads.fasta
$./sga filter reads.fasta
$./sga overlap -m 17 reads.fasta

11/38

https://github.com/jts/sga
http://code.google.com/p/google-sparsehash/
https://github.com/pezmaster31/bamtools
http://www.zlib.net/

· m : overlap length (pb)

$./sga assemble reads.filter.pass.asqg.gz

Encountered errors

substring read found during overlap computation

Solution : run the rmdup script

$./sga rmdup reads.fasta

Note that the commands for constructing the graph and then assembling must contain the following input files :

· “reads.filter.pass.rmdup.fa”

· “reads.filter.pass.rmdup.asqg.gz”

Output data

The output of SGA assembler provides a ”default-contigs.fasta” file containing the final assembly. The name of this file can be
modified with the option ”-o”.

3.6 Smartdenovo

Introduction

Smartdenovo is a fast de novo assembler for PacBio and ONT data. It produces a sequence consensus after aligning reads
against themselves.

Website : https://github.com/ruanjue/smartdenovo

Installation

Smartdenovo requires an unix system.

Smartdenovo can be downloaded as source code

$ git clone https://github.com/ruanjue/smartdenovo.git &&
(cd smartdenovo; make)

Input data

Smartdenovo takes long reads sequences in a FASTA file format.

Pipeline

Smartdenovo has several tools to find overlaps between reads, to identify the chimeric or low-quality regions, and then to
construct consensus sequences. These tools are launched by the perl script ”smartdenovo.pl” :

$ smartdenovo.pl -p prefix reads.fa > prefix.mak
$ make -f prefix.mak

Output data

The genome assembly is in a file with ”.dmo.lay.utg” extension.

3.7 Abruijn

Introduction

Abruijn is a de novo assembler, currently under development. It creates a de Bruijn graph from long reads.

Website : https://github.com/fenderglass/ABruijn

12/38

https://github.com/ruanjue/smartdenovo
https://github.com/fenderglass/ABruijn

Installation

Abruijn requires an unix system and Blasr.

Blasr installation:

$ git clone git://github.com/PacificBiosciences/blasr.git blasr
$./configure.py --no-pbbam HDF5_INCLUDE=f1 HDF5_LIB=f2
$ make blasr

Abruijn installation:

$ git clone https://github.com/fenderglass/ABruijn.git
$ cd Abruijn
$ make

Input data

Abruijn requires long reads stored in a FASTA file format, as well as the estimated coverage of long reads.

Pipeline

The Abruijn software begins by pre-assembling the long erroneous reads. To do so, Abruijn constructs an A-bruijn graph from
solid kmers.Then, Abruijn looks for a path in the A-bruijn graph, thus giving a pre-assembled genome with errors. Finally,
Abruijn use the BLASR alignment of the long reads against the preassembled genome in order to obtain a corrected assembly
of the genome.

The following command line launch the assembly:

$ python abruijn.py -t 8 -k 16 reads.fasta <dossier de sortie>
<taux de couverture>

· t : number of threads

· k : kmer length

Output data

Corrected sequences are located in a ”polished.fasta” file, stored in the specified output folder.

3.8 Ra

Introduction

Ra is a de novo assembler taking only long reads as input. It has the particularity of using a new mapper named Graphmap.
Nevertheless, since the development of this tool is still recent, Ra does not include a consensus stage (as Miniasm), so the
assembly file has the error rate similar to the input reads.

Website : https://github.com/mariokostelac/ra-integrate

Installation

Ra requires a linux system, ruby 2.2, make, g++ (4.8+) et graphviz. It is also possible to launch Ra via the use of a Docker
container.

Compilation of Ra:

$ git clone--recursive https://github.com/mariokostelac/ra-integrate.git
$ make

Start Ra in a Docker container:

$ docker pull mariokostelac/ra-integrate:master

13/38

https://github.com/mariokostelac/ra-integrate

Input data

Ra only needs Long reads stored in a FASTA file format.

Pipeline

In order to find overlaps between the different long reads used to generated a genome assembly, Graphmap’s agorithm is divided
into 5 steps:

1. Reduces the search space and get seed hits as a form of coarse alignment using a novel adaptation of gapped spaced
seeds.

2. Constructs anchors using a graph-based vertex-centric processing of seeds.

3. Chains anchors using a kmer version of longest common subsequence (LCSk) construction.

4. Refines alignments by chaining anchors in the anchored mode or with a form of L1 linear regression in the semiglobal
alignment mode

5. Evaluates the remaining candidates to select the best location to reconstruct a final alignment

The following command line launch the assembly:

$ script/run reads.fa

Output data

The file containing the assembled sequences (FASTA) is in an output folder named ”assembly.number”

14/38

4 SLR assemblers (Short and Long Read)

4.1 DBG2OLC

Introduction

DBG2OLC is an assembler using Illumina contigs as anchor points to construct an overlap graph with long reads.

Site web : https://github.com/yechengxi/DBG2OLC

Installation

DBG2OLC requires a linux system and the prior installation of Blasr and Sparc. DBG2OLC, Blasr and Sparc can be downloaded
as source code. Blasr Installation requires hdf 1.8.12+. It is also possible to install SparseAssembler in order to construct
contigs from short reads.

DBG2OLC installation

$ git clone http://git.code.sf.net/p/dbg2olc/code dbg2olc-code
$ cd dbg2olc-code
$ g++ DBG2OLC.cpp -o DBG2OLC

Blasr installation

$ git clone git://github.com/PacificBiosciences/blasr.git blasr
$./configure.py --no-pbbam HDF5_INCLUDE=f1 HDF5_LIB=f2
$ make blasr

· f1 : fichier header HDF5

· f2 : fichier librairie HDF5

Sparc installation

$ git clone http://git.code.sf.net/p/sparc-consensus/code sparc-consensus-code
$ g++ Sparc.cpp -o Sparc

Input data

DBG2OLC Accepts contigs with either long reads (Pacbio, ONT) in FASTA format, or short reads like Illumina in FASTA or
FASTQ format. Contigs can previously be constructed using a DBG assembler such as SparseAssembler.

Pipeline

DBG2OLC software is divided in 5 stages :

1. Construction of a De-Bruijn graph and creation of contigs from short reads (SparseAssembler)

2. Alignment of contigs with each long read. Long reads are compressed into lists of anchors

3. Execution of multiple alignments to suppress chimeric long reads

4. Construction of an overlap graph using long compressed reads

5. Deduction of a consensus sequence from the graph

The following command launch the pipeline:

$./DBG2OLC k 17 KmerCovTh 2 MinOverlap 20 AdaptiveTh 0.002 Contigs Contigs.txt \\
RemoveChimera 1 f <fichier_pacbio1> f <fichier_pacbio2>

· KmerCovTh : fixed k-mer matching threshold

· MinOverlap : minimum overlap score between a pair of long reads

· AdaptiveTh : adaptive k-mer matching threshold

· k : kmer length

15/38

https://github.com/yechengxi/DBG2OLC

· Contigs : the contigs file in Fasta format

· MinLen : read minimum length

· RemoveChimera : suppresses chimeric reads in a data set.

This parameters are critical for performance : KmerCovTh, MinOverlap et AdaptiveTh.

For PacBio data, depending on the coverage, it is advised to use the following values :

Coverage 10x/20x 50x/100x
KmerCovTh 2-5 2-10
MinOverlap 10-30 50-150
AdaptiveTh 0.001 0.01 0.01-0.02

Table 5: Values to use according to the coverage rate of the long reads dataset.

A file named ”backbone raw. f asta” contains scaffolds constructed by DBG2OLC. In order to finalize the assembly, the script
”split and run” must be executed. Verify that Blasr has been defined in the PATH variable, that the Sparc binary is present in
the same folder as the script to be executed and the following files:

· The scaffolds file produced by DBG2OLC (”backbone raw. f asta”)

· The consensus file generated by DBG2OLC (”DBG2OLC Consensus in f o.txt”)

· The contigs file

· The long reads file

Then,It is necessary to merge the long reads and the contigs files into a single file.

$ cat Contigs.txt pb_reads.fasta > ctg_pb.fasta

Finally, the script ”split and run sparc.sh” located in the ”utility” folder must be run.

$ sh ./split_and_run_sparc.sh backbone_raw.fasta DBG2OLC_Consensus_info.txt \\
ctg_pb.fasta ./consensus_dir > consensus_log.txt

Encountered errors

./split andrun sparc r2.sh: 1: eval: blasr: not found

Solution: Edit the script ”split and run sparc.sh” so that BLASR can be found.

Output file

The script ”spli and run” generates a file named ”final assembly.fasta” in the utility folder, containing scaffolds from the
finished assembly.

DBG2OLC pipeline

4.2 Spades

Introduction

SPAdes (St. Petersburg genome assembler) is an assembler originally designed for the assembly of small genomes. It supports
Illumina / IonTorrent reads, and now has an option to run hybrid assembly with long reads.

site web : http://bioinf.spbau.ru/spades

Installation

SPAdes requires a linux or Mac OS system and python. SPAdes can be downloaded as source code or pre-computed
binaries.

Download ans extract binaries files:

16/38

http://bioinf.spbau.ru/spades

Figure 1. Details of the DBG2OLC pipeline. DBG2OLC uses contigs with either long reads or short reads to generate data
such as scaffolds and statistics on the assembly. Sparc will then start from this files to create a final consensus of the assembly

$ wget http://spades.bioinf.spbau.ru/release3.6.0/SPAdes-3.6.0-Linux.tar.gz
$ tar -zxf SPAdes-3.6.0-Linux.tar.gz
$ cd SPAdes-3.6.0-Linux/bin/

Download and install source code:

$ wget http://spades.bioinf.spbau.ru/release3.6.0/SPAdes-3.6.0.tar.gz
$ tar -zxf SPAdes-3.6.0.tar.gz
$ cd SPAdes-3.6.0
$./spades_compile.sh

Input data

SPAdes supports paired-end reads, mate-pairs and unpaired reads in FASTA or FASTQ format. If available, contigs can be
added as input data to enhance the assembly.

Pipeline

SPAdes constructs a de-Bruijn graph from k-mers of different length. Thus, a smaller k value in low-coverage regions minimizes
fragmentation, while a higher k-value in heavily covered areas reduces the number of chimeric contigs. Contigs are then
deduced from the graph. Finally, long reads are used for closing gaps and identifying repeated regions.

$ spades.py --only-assembler --nanopore <file_name> -s <file_name> \\
-trusted-contigs <file_name> -o <output_dir>

· --only-assembler : start the assembly module

· --nanopore : long reads file

· -s : short reads file

· --trusted-contigs : contigs file

· -o : Output folder

17/38

Output data

SPAdes generates several files in the output folder:

· ”scaffolds.fasta”: scaffolds created by the assembly.

· ”param.txt”: list of parameters

· ”warning.log”: log file

4.3 Cerulean

Introduction

Cerulean extends the contigs assembled from short reads, such as Illumina, using long reads.

Website : http://sourceforge.net/projects/ceruleanassembler/

Installation

Cerulean requires linux system and the installation of this software:

· Python 2.7.1

· numpy et matplotlib (python libraries)

· Abyss assembler http://www.bcgsc.ca/platform/bioinfo/software/abyss

· Blasr (from SMRT Analysis toolkit): http://pacbiodevnet.com/

· Pbjelly : https://sourceforge.net/projects/pb-jelly/

Download and extract Cerulean scripts:

$ wget
http://sourceforge.net/projects/ceruleanassembler/files/Cerulean_v_0_1.tar.gz
$ tar -zxf Cerulean_v_0_1.tar.gz

Input data

Cerulean needs the contigs assembled from the short reads assembler Abyss, as well as the mapping of the long reads on these
contigs, performed by Blasr.

Assembly from Illumina reads.

$ abyss-pe k=64 n=10 in=’reads1.fastq reads2.fastq’ name=$<$dataname$>$

· k : k-mer length

· n : minimum number of pairs required for building contigs

2 files are then created :

· ”<dataname>-contigs.fa”: contigs sequences

· ”<dataname>-contigs.dat”: graph structure

Mapping of long reads on contigs with Blasr :

$ blasr <dataname>_pacbio.fa <dataname>-contigs.fa -minMatch 10
-minPctIdentity 70 -bestn 30 -nCandidates 30 -maxScore 500
-nproc <numthreads> -noSplitSubreads
-out <dataname>_pacbio_contigs_mapping.fasta.m4

· minMatch : Minimum seed length

· minPctIdentity : Minimum pourcentage of identity

· bestn : display the n best alignments

18/38

http://sourceforge.net/projects/ceruleanassembler/

· nCandidates : display the n best candidates

· maxScore : maximum score to display

· nproc : number of threads

· noSpliSubreads : reads are not splited

Pipeline

All input files must be in the same folder :

· <dossier>/<dataname>-contigs.fa

· <dossier>/<dataname>-contigs.dot

· <dossier>/<dataname> pacbio contigs mapping.fasta.m4

Celurean is started by the following command line :

$ python src/Cerulean.py --dataname <dataname> --basedir <basedir> --nproc <numthreads>

· dataname? datasets name

· basedir? pathway to input folder

· nproc? number of threads

Output data

Celurean generates the file ”<dossier> cerulean.fasta”, containing the assembly results. Finally,Cerulean authors recommended
using PBJelly in order to close remaining gaps.

Cerulean pipeline

Figure 2. Details of the Cerulean pipeline. Cerulean uses data from the short reads assembler Abyss and the mapping of the
long reads (Blasr) on contigs to generate the final assembly

19/38

5 Results

5.1 Evaluation of assembly

The reference genome is used to evaluate the quality of the different assemblies, on the basis of the results of the metrics
produced by the QUAST software. The different metrics are listed below:

· # contigs (> 1000bp) : Total number of contigs exceeding 1000 bp.

· Largest contig: The length of the longest contig in the assembly.

· Total length: total number of base pairs in the contigs generated by the assembly.

· N50: the minimum length of a set of contigs ordered by decreasing length such that the sum of base pairs in this set is
larger than or equal to half the total number of base pairs included in the assembly.

· Genome fraction (%): the percentage of aligned bases in the reference genome.

The combination of this metrics defines the assembly quality. Obviously, the best assembly result must take into account fewer
number of contigs, higher N50, higher Largest contig, a total length of the assembly as close as possible to the expected genome
length and higher genome fraction in a minimum execution time.

5.2 Benefit of long reads in hybrid assembly

Finally, in order to attest the advantages of long reads in an hybrid assembly pipeline, we try to assemble genomes solely with
short reads dataset (indicated as ”Run 2” in the result tables and tested for DBG2OLC and Spades), as opposed to an hybrid
assembly executed with a combination of long and short read datasets (indicated as ”Run 1” in the result tables).

20/38

5.3 Testing Data Sets

Acinetobacter sp. adp1, Illumina: Internal data

Acinetobacter sp. adp1, Minion run5: http://www.genoscope.cns.fr/externe/nas/datasets/MinION/
acineto/acineto_nanopore_2D_run5.fa.gz

Acinetobacter sp. adp1, Minion run6: http://www.genoscope.cns.fr/externe/nas/datasets/MinION/
acineto/acineto_nanopore_2D_run6.fa.gz

Escherichia coli k-12, Illumina: ftp://webdata:webdata@ussd-ftp.Illumina.com/Data/SequencingRuns/
MG1655/MiSeq_Ecoli_MG1655_110721_PF_R1.fastq.gz
ftp://webdata:webdata@ussd-ftp.Illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_
110721_PF_R2.fastq.gz

Escherichia coli k-12, Minion: http://www.genoscope.cns.fr/externe/nas/datasets/MinION/ecoli/
Ecoli_LomanAll2D.fa.gz

Escherichia coli k-12, Pacbio (p4c2): http://sourceforge.net/projects/wgs-assembler/files/wgs-assembler/
wgs-8.0/datasets/escherichia_coli_k12_mg1655.m130404_014004_sidney_c100506902550000001823076808221337_
s1_p0.1.fastq.xz
http://sourceforge.net/projects/wgs-assembler/files/wgs-assembler/wgs-8.0/datasets/escherichia_
coli_k12_mg1655.m130404_014004_sidney_c100506902550000001823076808221337_s1_p0.2.fastq.
xz
http://sourceforge.net/projects/wgs-assembler/files/wgs-assembler/wgs-8.0/datasets/escherichia_
coli_k12_mg1655.m130404_014004_sidney_c100506902550000001823076808221337_s1_p0.3.fastq.
xz

Escherichia coli k-12 Pacbio (p6c4): https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly

Saccharomyces cerevisiae W303, Illumina: Accession number: SRR567755

Saccharomyces cerevisiae W303, Minion: http://www.genoscope.cns.fr/externe/nas/datasets/MinION/
yeast/W303_ONT_Raw_reads_2D.fa.gz

Saccharomyces cerevisiae W303, Pacbio (p4c2): https://github.com/PacificBiosciences/DevNet/wiki/
Saccharomyces-cerevisiae-W303-Assembly-Contigs

Caenorhabditis elegans, Illumina: Accession numbers: SRR065388, SRR065389, SRR065390

Caenorhabditis elegans, Pacbio (p6c4): http://datasets.pacb.com.s3.amazonaws.com/2014/c_elegans/
list.html

21/38

http://www.genoscope.cns.fr/externe/nas/datasets/MinION/acineto/acineto_nanopore_2D_run5.fa.gz
http://www.genoscope.cns.fr/externe/nas/datasets/MinION/acineto/acineto_nanopore_2D_run5.fa.gz
http://www.genoscope.cns.fr/externe/nas/datasets/MinION/acineto/acineto_nanopore_2D_run6.fa.gz
http://www.genoscope.cns.fr/externe/nas/datasets/MinION/acineto/acineto_nanopore_2D_run6.fa.gz
ftp://webdata:webdata@ussd-ftp.Illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R1.fastq.gz
ftp://webdata:webdata@ussd-ftp.Illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R1.fastq.gz
ftp://webdata:webdata@ussd-ftp.Illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R2.fastq.gz
ftp://webdata:webdata@ussd-ftp.Illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R2.fastq.gz
http://www.genoscope.cns.fr/externe/nas/datasets/MinION/ecoli/Ecoli_LomanAll2D.fa.gz
http://www.genoscope.cns.fr/externe/nas/datasets/MinION/ecoli/Ecoli_LomanAll2D.fa.gz
http://sourceforge.net/projects/wgs-assembler/files/wgs-assembler/wgs-8.0/datasets/escherichia_coli_k12_mg1655.m130404_014004_sidney_c100506902550000001823076808221337_s1_p0.1.fastq.xz
http://sourceforge.net/projects/wgs-assembler/files/wgs-assembler/wgs-8.0/datasets/escherichia_coli_k12_mg1655.m130404_014004_sidney_c100506902550000001823076808221337_s1_p0.1.fastq.xz
http://sourceforge.net/projects/wgs-assembler/files/wgs-assembler/wgs-8.0/datasets/escherichia_coli_k12_mg1655.m130404_014004_sidney_c100506902550000001823076808221337_s1_p0.1.fastq.xz
http://sourceforge.net/projects/wgs-assembler/files/wgs-assembler/wgs-8.0/datasets/escherichia_coli_k12_mg1655.m130404_014004_sidney_c100506902550000001823076808221337_s1_p0.2.fastq.xz
http://sourceforge.net/projects/wgs-assembler/files/wgs-assembler/wgs-8.0/datasets/escherichia_coli_k12_mg1655.m130404_014004_sidney_c100506902550000001823076808221337_s1_p0.2.fastq.xz
http://sourceforge.net/projects/wgs-assembler/files/wgs-assembler/wgs-8.0/datasets/escherichia_coli_k12_mg1655.m130404_014004_sidney_c100506902550000001823076808221337_s1_p0.2.fastq.xz
http://sourceforge.net/projects/wgs-assembler/files/wgs-assembler/wgs-8.0/datasets/escherichia_coli_k12_mg1655.m130404_014004_sidney_c100506902550000001823076808221337_s1_p0.3.fastq.xz
http://sourceforge.net/projects/wgs-assembler/files/wgs-assembler/wgs-8.0/datasets/escherichia_coli_k12_mg1655.m130404_014004_sidney_c100506902550000001823076808221337_s1_p0.3.fastq.xz
http://sourceforge.net/projects/wgs-assembler/files/wgs-assembler/wgs-8.0/datasets/escherichia_coli_k12_mg1655.m130404_014004_sidney_c100506902550000001823076808221337_s1_p0.3.fastq.xz
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
http://www.genoscope.cns.fr/externe/nas/datasets/MinION/yeast/W303_ONT_Raw_reads_2D.fa.gz
http://www.genoscope.cns.fr/externe/nas/datasets/MinION/yeast/W303_ONT_Raw_reads_2D.fa.gz
https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
http://datasets.pacb.com.s3.amazonaws.com/2014/c_elegans/list.html
http://datasets.pacb.com.s3.amazonaws.com/2014/c_elegans/list.html

5.4 Test 1: Acinetobacter sp, ADP1, run5; Minion 10x

Datasets:

· ONT 2D reads corrected by Lordec: 3 427 reads

· Illumina reads (MiSeq) : 211 219 reads of length 150pb, 16x

· Contigs generated by sparse assembler with Illumina reads (233 contigs), needed for hybrid assembly

LRO Assemblers

Metrics Celera Falcon Miniasm Newbler

contigs (>=1000pb) – 237 34 910
N50 – 57 840 112 086 487 000

Largest contig – 658 902 340 549 24 4182
Execution time – 1h52m58s 3.6sec 8m20s

Total length – 10 509 831 2 712 071 5 203 730
Genome fraction – 96.5 71.63 98.9

Metrics SGA Smartdenovo Abruijn Ra

contigs (>=1000pb) – 26 26 2
N50 – 164 126 130 182 2 510 403

Largest contig – 363 376 345 439 2 510 403
Execution time – 37s 20m48s 47s

Total length – 3 341 599 3 072 900 3 383 054
Genome fraction – 89.02 84.69 86.75

Table 6: Quast results generated from various LRO assemblers with 10x of Minion long reads (Acinetobacter sp. ADP1).
The lack of results for Celera and SGA assemblers is caused by the low coverage rate of long reads.

Assemblers SLR

DBG2OLC Spades Cerulean
Metrics run 1 run 2 run 1 run 2 run 1

contigs (>=1000pb) 1 48 3 44 8
N50 3 636 390 201 371 3 601 686 191 200 1 474 160

Largest contig 3 636 390 323 681 3 601 686 377 379 1 845 480
Execution time 38s 1m12s 7m10s 20m12s 12m

Total length 3 636 390 3 631 852 3 607 931 3 554 907 10 700 143
Genome fraction 99 99 99.99 98.4 99.77

Table 7: Quast results generated from various SLR assemblers with 10x of Minion long reads, contigs generated from short
reads and Illumina short reads (Acinetobacter sp. ADP1).

22/38

5.5 Test 2: Acinetobacter sp, ADP1, run6; Minion 20x

Datasets:

· ONT 2D reads corrected by Lordec: 10 116 reads

· Illumina reads(MiSeq) : 211,219 reads of length 150pb, 16x

· Contigs generated by sparse assembler with Illumina reads (233 contigs), needed for hybrid assembly

Assemblers LRO

Metrics Celera Falcon Miniasm Newbler

contigs (>=1000pb) – 29 1 2 056
N50 – 3 651 707 3 594 439 2 321

Largest contig – 356 596 3 594 439 325 922
Execution time – 2h18m3s 13s 27m1s

Total length – 3 651 707 3 594 439 7 636 549
Genome fraction – 90.6 91.08 98.9

Metrics SGA Smartdenovo Abruijn Ra

contigs (>=1000pb) – 1 1 4
N50 – 3 622 997 3 601 882 1 215 050

Largest contig – 3 622 997 3 601 882 1 717 290
Execution time – 1m33s 22m9s 4m29s

Total length – 3 622 997 3 601 882 3 648 098
Genome fraction – 97.22 100 88.45

Table 8: Quast results generated from various LRO assemblers with 20x of ONT long reads (Acinetobacter sp. ADP1).

The lack of results for Celera and SGA assemblers is caused by the low coverage rate of long reads.

SLR assemblers

DBG2OLC Spades Cerulean
Metrics run 1 run 2 run 1 run 2 run1

contigs (>=1000pb) 3 48 3 44 7
N50 2 743 656 201 371 3 602 046 191 200 881 591

Largest contig 23 681 323 681 3 602 046 377 379 2 302 560
Execution time 1m27s 1m12s 11m25s 20m12s 33min

Total length 3 341 152 3 631 852 3 608 291 3 554 907 7 041 048
Genome fraction 88.35 99 99.99 98.4 99.7

Table 9: Quast results generated from various SLR assemblers with 20x of ONT long reads, contigs generated from short reads
and Illumina short reads (Acinetobacter sp. ADP1).

23/38

5.6 Test 3: Escherichia coli k-12, reads Pacbio 10x (P4-C2)

Datsets:

· Pacbio reads corrected with lordec (10x coverage): 36 355 reads

· Illumina reads(MiSeq) : 11 458 940 reads of length 150pb, 370x

· Contigs generated by sparse assembler from Illumina reads (1 876 792 contigs), needed for hybrid assembly

Assemblers LRO

Metrics Celera Falcon Miniasm Newbler

contigs (>=1000pb) 332 – 161 7 537
N50 47 318 – 19 379 1 999

Largest contig 157 193 – 54 170 31 521
Execution time 1h41m6s – 15s 21m42s

Total length 5 097 702 – 1 921 945 18 789 586
Genome fraction 97.7 – 55.7 98.69

Metrics SGA Smartdenovo Abrijn Ra

contigs (>=1000pb) 27 519 93 – 152
N50 1 795 33 149 – 59 639

Largest contig 20 571 95 016 – 265 054
Execution time 45m12s 18s – 3m11s

Total length 91 585 601 2 787 937 – 5 638 785
Genome fraction 99.9 53.04 – 87.13

Table 10: Quast results generated from various LRO assemblers with 10x of P4C2 Pacbio long reads (Escherichia coli
k-12).

The lack of results for Falcon et Abruijn assemblers is caused by the low coverage rate of long reads.

SLR Assemblers

DBG2OLC Spades Cerulean
Metrics run 1 run 2 run 1 run 2 run1

contigs (>=1000pb) 167 502 33 90 25
N50 24 576 729 423 200 126 572 284 387

Largest contig 66 617 4 730 584 914 221 710 855 359
Execution time 2h33m16s 1h6m15s 20h6m40s 1d14h7m47s 3h2m9s

Total length 3 285 170 3 006 518 4 752 529 4 551 234 5 536 433
Genome fraction 72.2 61 99.1 97.9 99.388

Table 11: Quast results generated from various SLR assemblers with 10x of P4C2 Pacbio long reads, contigs generated
from short reads and Illumina short reads (Escherichia coli k-12).

24/38

5.7 Test 4 : Escherichia coli k-12, reads Pacbio 100x (P4-C2)

Datasets:

· Pacbio reads corrected by lordec (100x coverage): 91 394 reads

· Illumina reads (MiSeq) : 11 458 940 reads of length 150pb, 370x

· Contigs generated by sparse assembler from Illumina reads (1 876 792 contigs), needed for hybrid assembly

LRO assemblers

Metrics Celera Falcon Miniasm Newbler

contigs (>=1000pb) 317 9 070 1 16 421
N50 71 566 15 423 4 685 365 1 999

Largest contig 281 759 69 760 4 685 365 35 033
Execution time 13h50m 2h9min 2m41s 2h5m3s

Total length 6 968 300 111 813 089 4 685 365 3 6154 946
Genome fraction 99.9 100 96.98 99.6

Metrics SGA Smartdenovo Abrijn Ra

contigs (>=1000pb) 80 568 1 1 332
N50 7 366 4 682 708 4 642 185 48 453

Largest contig 29 821 4 682 708 4 642 185 8 062 545
Execution time 4h43m27s 13m18s 45m56s 53m17s

Total length 458 775 476 4 682 708 4 642 185 8 062 545
Genome fraction 100 96.69 99.9 94.42

Table 12: Quast results generated from various LRO assemblers with 100x of P4C2 Pacbio long reads (Escherichia coli
k-12).

SLR assembler

DBG2OLC Spades Cerulean
Metrics run 1 run 2 run 1 run 2 run1

contigs (>=1000pb) 361 502 27 90 17
N50 32 616 729 488 422 126 572 613 288

Largest contig 206 766 4 730 960 524 221 710 737 401
Execution time 2h40m 1h6m15s 12h4m21s 1d14h7m47s 3h54m47s

Total length 7 520 958 3 006 518 4 941 241 4 551 234 5 278 430
Genome fraction 90.8 61 99.55 97.9 99.38

Table 13: Quast results generated from various SLR assemblers with 100x of P4C2 Pacbio long reads, contigs generated from
short reads and Illumina short reads (Escherichia coli k-12).

25/38

5.8 Test 5: Escherichia coli k-12, reads Pacbio 10x (P6-C4)

Datasets:

· reads Pacbio corrected by lordec (10x coverage) : 8 746 reads

· reads Illumina (MiSeq) : 11 458 940 reads of length 150pb, 370x

· Contigs generated by sparse assembler from Illumina reads (1 876 792 contigs), needed for hybrid assembly

Assemblers LRO

Metrics Celera Falcon Miniasm Newbler

contigs (>=1000pb) 60 – 26 2 136
N50 167 523 – 350 193 5 198

Largest contig 357 039 – 703 052 79 937
Execution time 3h1m47s – 10s 10m

Total length 4 838 203 – 4 585 882 8 129 512
Genome fraction 97.3 – 95.93 98.97

Metrics SGA Smartdenovo Abruijn Ra

contigs (>=1000pb) 178 9 10 12
N50 1 3410 1 207 236 857 514 583 331

Largest contig 28016 1 490,628 1 717 212 295 905
Execution time 1h22m 1m23s 10m9s 3m17s

Total length 1 281 475 4 650 012 4 576 044 4 893 126
Genome fraction 16.04 94.86 97.2 94.39

Table 14: Quast results generated from various LRO assemblers with 10x of P6C4 Pacbio long reads (Escherichia coli
k-12).

The lack of results for the Falcon assembler is caused by the low coverage rate of long reads.

SLR assembler

DBG2OLC Spades Cerulean
Metrics run 1 run 2 run 1 run 2 run1

contigs (>=1000pb) 68 502 27 90 27
N50 64 971 729 472 057 126 572 400 533

Largest contig 208 657 4 730 708 505 221 710 610 814
Execution time 2h32m55s 1h6m15s 14h35m23s 1d14h7m47s 3h5m24s

Total length 3 618 860 3 006 518 5 171 060 4 551 234 4 774 395
Genome fraction 75 61 99.4 97.9 99.28

Table 15: Quast results generated from various SLR assemblers with 10x of P6C4 Pacbio long reads, contigs generated from
short reads and Illumina short reads (Escherichia coli k-12).

26/38

5.9 Test 6: Escherichia coli k-12, reads Pacbio 100x (P6-C4)

Datasets:

· Pacbio reads corrected by lordec (100x coverage): 87 497 reads

· Illumina reads(MiSeq) : 11 458 940 reads of length 150pb, 370x

· Contigs generated by sparse assembler from Illumina reads (1 876 792 contigs), needed for hybrid assembly

LRO assemblers

Metrics Celera Falcon Miniasm Newbler

contigs (>=1000pb) 451 33 2 27 179
N50 36 715 291 737 4 680 508 1 999

Largest contig 370 387 938 257 4 680 508 15 870
Execution time 6d6h51m49s 53m26s 5m32s 7h6m

Total length 1 0746 953 4 845 711 4 734 166 57 510 328
Genome fraction 99.55 94.5 96.53 99.77

Metrics SGA Smartdenovo Abruijn Ra

contigs (>=1000pb) 1410 12 1 120
N50 3 352 535 879 4 642 563 130 683

Largest contig 18 357 1 303 952 4 642 563 415 320
Execution time 13h19m 30m46s 1h57m29s 2h45m4s

Total length 4 425 758 4 840 284 4 642 563 7 907 056
Genome fraction 49.6 95.90 99.9 92.49

Table 16: Quast results generated from various LRO assemblers with 100x of P6C4 Pacbio long reads (Escherichia coli
k-12).

SLR assemblers

DBG2OLC Spades Cerulean
Metrics run 1 run 2 run 1 run 2 run1

contigs (>=1000pb) 134 502 23 90 72
N50 81 570 729 449 002 126 572 121 474

Largest contig 386 914 4 730 707 712 221 710 287 981
Execution time 2h43m30s 1h6m15s 13h50m18s 1d14h7m47s 4h25m26s

Total length 6 439 845 3 006 518 4 948 122 4 551 234 4 772 924
Genome fraction 91.57 61 99.56 97.9 98.9

Table 17: Quast results generated from various SLR assemblers with 100x of P6C4 Pacbio long reads, contigs generated from
short reads and Illumina short reads (Escherichia coli k-12).

27/38

5.10 Test 7: Escherichia coli k-12, Minion 20x

Datsets:

· ONT 2D reads corrected by lordec (10x coverage): 22 270 reads

· Illumina reads(MiSeq) : 11 458 940 reads of length 150pb, 370x

· Contigs generated by sparse assembler from Illumina reads (1 876 792 contigs), needed for hybrid assembly

LRO assemblers

Metrics Celera Falcon Miniasm Newbler

contigs (>=1000pb) 189 – 1 3 769
N50 87 431 – 4 665 895 3 191

Largest contig 313 881 – 4 665 895 33 550
Execution time 3h43m50s – 21.6sec 15m40s

Total length 5 758 951 – 4 665 895 7 798 978
Genome fraction 99.2 – 88.85 98.5

Metrics SGA Smartdenovo Abruijn Ra

contigs (>=1000pb) 17 680 2 5 7
N50 9 481 4 650 531 4 618 085 994 753

Largest contig 47 228 4 650 531 2 055 696 1 509 502
Execution time 2h16m37s 3m25s 7h55m54s 4m23s

Total length 134 072 452 4 707 245 4 618 085 4 737 110
Genome fraction 99.99 91.15 99.29 86.40

Table 18: Quast results generated from various LRO assemblers with 20x of ONT long reads (Escherichia coli k-12).

The lack of results for the Falcon assembler is caused by the low coverage rate of long reads.

SLR assemblers

DBG2OLC Spades Cerulean
Metrics run 1 run 2 run 1 run 2 run1

contigs (>=1000pb) 129 502 26 90 13
N50 50 709 729 472 057 126 572 2 891 290

Largest contig 135 085 4 730 1 030 461 221 710 2 891 290
Execution time 2h35m 1h6m15s 20h35m 1d14h7m47s 5h6m39s

Total length 4 107 939 3 006 518 5 264 214 4 551 234 5 011 011
Genome fraction 73 61 99.3 97.9 99.18

Table 19: Quast results generated from various SLR assemblers with 20x of ONT long reads, contigs generated from short
reads and Illumina short reads (Escherichia coli k-12).

28/38

5.11 Test 8: Saccharomyces cerevisae W303, Pacbio reads 10x (P4-C2)

Datasets:

· Pacbio reads corrected by Lordec (10x): 26 196 reads

· Illumina reads(MiSeq) : 3 815 678 reads of length 100pb, 65x

· Contigs generated by sparse assembler from Illumina reads(10 055 contigs), needed for hybrid assembly

LRO assemblers

Metrics Celera Falcon Miniasm Newbler

contigs (>=1000pb) 576 1 157 158 11 385
N50 50 224 16 175 34 485 1,999

Largest contig 245 675 68 708 86 751 52 210
Execution time 2h23m42s 2m13s 16s 1h42m36s

Total length 14 792 911 11 458 559 4 996 345 31 879 905
Genome fraction 95.3 97.24 40.024 97.4

Metrics SGA Smartdenovo Abrijn Ra

contigs (>=1000pb) 810 174 44 121
N50 8 396 60 876 60 553 159 052

Largest contig 21 663 215 286 118 337 427 616
Execution time 2h57m3s 1m31s 21m25s 17m36s

Total length 5 073 045 8 456 624 2 705 209 11 991 617
Genome fraction 20.7 66.95 22.56 85.61

Table 20: Quast results generated from various LRO assemblers with 10x of P4C2 Pacbio long reads (Saccharomyces cerevisae
W303).

SLR assemblers

DBG2OLC Spades Cerulean
Metrics run 1 run 2 run 1 run 2 run1

contigs (>=1000pb) 58 1 157 256 564 259
N50 427 868 16 175 83 770 37 681 153 850

Largest contig 989 517 68 633 369 700 145 780 444 461
Execution time 1m32s 2m22s 1h4m 24m30s 3h3m16s

Total length 11 952 152 11 458 559 11 760 318 11 518 863 12 849 306
Genome fraction, 92.398 97.24 98.44 98.09 94.8

Table 21: Quast results generated from various SLR assemblers with 10x of P4C2 Pacbio long reads, contigs generated from
short reads and Illumina short reads (Saccharomyces cerevisae W303).

29/38

5.12 Test 9: Saccharomyces cerevisae W303, Pacbio reads 100x (P4-C2)

Datasets:

· Pacbio reads corrected by lordec (100x): 261 964 reads

· Illumina reads(MiSeq) : 3 815 678 reads of length 100pb, 65x

· Contigs generated by sparse assembler from Illumina reads (10 055 contigs), needed for hybrid assembly

LRO assemblers

Metrics Celera Falcon Miniasm Newbler

contigs (>=1000pb) 5 599 17 857 25 64 900
N50 16 276 18 670 755 806 1 999

Largest contig 89 231 78 140 1 271 021 42 447
Execution time 1d8h1m12s 39d 7m24s 6d22h9m

Total length 52 637 674 267 821 084 12 022 519 140 588 558
Genome fraction 88.1 99.28 94.26 98.4

Metrics SGA Smartdenovo Abruijn Ra

contigs (>=1000pb) 251 627 20 26 –
N50 8 721 820 758 750 435 –

Largest contig 32 571 1 543 855 1 531 123 –
Execution time 23h28m23s 51m21s 10h4m27s –

Total length 1 492 957 147 12 209 277 12 207 471 –
Genome fraction 99.52 95.26 97.80 –

Table 22: Quast results generated from various LRO assemblers with 100x of P4C2 Pacbio long reads (Saccharomyces
cerevisae W303).

The absence of results from Ra assembler is caused by the high quantity of input data.

SLR assemblers

DBG2OLC Spades Cerulean
Metrics run 1 run 2 run 1 run 2 run1

contigs (>=1000pb) 103 1 157 188 564 240
N50 165 784 16 175 129 444 37 681 190 934

Largest contig 423 865 68 633 372 443 145 780 638 854
Execution time 46m35s 2m22s 6h9m44s 24m30s 3h34m24s

Total length 9 393 403 11 458 559 11 944 790 11 518 863 12 497 420
Genome fraction 68.8 97.24 98.5 98.09 94.7

Table 23: Quast results generated from various SLR assemblers with 100x of P4C2 Pacbio long reads, contigs generated from
short reads and Illumina short reads (Saccharomyces cerevisae W303).

30/38

5.13 Test 10: Saccharomyces cerevisae W303, ONT reads 20x

Datasets:

· ONT 2D reads corrected by lordec (20x coverage) : 4 7027 reads

· Illumina reads(MiSeq) : 3 815 678 reads of length 100pb, 65x

· Contigs generated by sparse assembler from Illumina reads (10 055 contigs), needed for hybrid assembly

LRO assemblers

Metrics Celera Falcon Miniasm Newbler

contigs (>=1000pb) 894 – 169 35 687
N50 20 733 – 76 389 1 999

Largest contig 89 592 – 291 498 34 166
Execution time 2h54m32s – 17s 2h5m46s

Total length 13 766 378 – 10 152 501 87 137 754
Genome fraction 87.9 – 68.99 96.8

Metrics SGA Smartdenovo Abruijn Ra

contigs (>=1000pb) 37 932 156 – 155
N50 7 991 84 777 – 127 765

Largest contig 42 223 222 924 – 349 350
Execution time 9h32m51s 2m18s – 13m21s

Total length 247 200 021 10 456 229 – 12 573 431
Genome fraction 98.8 77.93 – 69.06

Table 24: Quast results generated from various LRO assemblers with 20x of ONT long reads (Saccharomyces cerevisae
W303).

The absence of results from Falcon and Abruijn is caused by the low coverage rate of long reads.

SLR assemblers

DBG2OLC Spades Cerulean
Metrics run 1 run 2 run 1 run 2 run1

contigs (>=1000pb) – 1 157 268 564 327
N50 – 16 175 79 613 37 681 94 617

Largest contig – 68 633 370 360 145 780 361 438
Execution time – 2m22s 1h30m31s 24m30s 3h6m41s

Total length – 11 458 559 11 917 307 11 518 863 15 628 680
Genome fraction – 97.24 98.293 98.09 93.78

Table 25: Quast results generated from various SLR assemblers with 20x of ONT long reads, contigs generated from short
reads and Illumina short reads (Saccharomyces cerevisae W303).

The absence of results from DBG2OLC assembler results is caused by the low coverage rate of long reads.

31/38

5.14 Test 11: Caenorhabditis elegans, Pacbio reads 10x (P6-C4)

Datasets:

· Pacbio reads corrected by lordec (10x coverage) : 92 597 reads

· Illumina reads(MiSeq) : 55 070 232 reads of length 150pb, 165x

· Contigs generated by sparse assembler from Illumina reads (1 022 387 contigs), needed for hybrid assembly

LRO assemblers

Metrics Celera Falcon Miniasm Newbler

contigs (>=1000pb) 45 – 1056 104079
N50 1166 – 77 770 1 999

Largest contig 2 181 – 499 152 5 415
Execution time 52m45s – 2m7sec 18h42m21s

Total length 56 811 – 71 910 795 208 178 837
Genome fraction 0.048 – 12.3 45.5

Metrics SGA Smartdenovo Abruijn Ra

contigs (>=1000pb) – 784 39 –
N50 – 151 698 58 948 –

Largest contig – 546 464 137 901 –
Execution time – 11m22s 17m23s –

Total length – 91 256 859 2 391 267 –
Genome fraction – 13.16 0 –

Table 26: Quast results generated from various LRO assemblers with 10x of P6C4 Pacbio long reads (Caenorhabditis
elegans).

The absence of results from Falcon Ra and SGA is caused by the low coverage rate of long reads.

SLR assembler

DBG2OLC Spades Cerulean
Metrics run 1 run 2 run 1 run 2 run1

contigs (>=1000pb) 490 17,569 – 10,330 –
N50 428 709 8 680 – 18 309 –

Largest contig 1 392 481 115 038 – 142 723 –
Execution time 4h57m 6h55m42s – 15m34s –

Total length 103 432 617 95 943 011 – 96 585 462 –
Genome fraction 17.94 88.1 – 93.06 –

Table 27: Quast results generated from various SLR assemblers with 10x of P6C4 Pacbio long reads, contigs generated from
short reads and Illumina short reads (Caenorhabditis elegans).

The lack of results for the Spades and Cerulean assemblers is caused respectively by an insufficient available RAM and an
excessive execution time.

32/38

5.15 Test 12: Caenorhabditis elegans, Pacbio reads 100x (P6-C4)

Datasets:

· Pacbio reads corrected by lordec (100x coverage): 740,776 reads

· Illumina reads (MiSeq) : 55,070,232 reads of length 150pb, 165x

· Contigs generated by sparse assembler with Illumina reads (1,022,387 contigs), needed for hybrid assembly

LRO assemblers

Metrics Celera Falcon Miniasm Newbler

contigs (>=1000pb) 6 895 18 031 140 410 532
N50 58 720 18 602 1 921 931 1 999

Largest contig 726 905 82 715 5 921,636 297 726
Execution time 19d21h 37d20h 2h10m 22d20m

Total length 135 257 379 268 424 680 107 385 322 728 306 963
Genome fraction 86.8 0 89.33 98.7

Metrics SGA Smartdenovo Abruijn Ra

contigs (>=1000pb) – 90 – –
N50 – 2 249 996 – –

Largest contig – 4 716 467 – –
Execution time – 8h32m43s – –

Total length – 107 109 382 – –
Genome fraction – 91.17 – –

Table 28: Quast results generated from various LRO assemblers with 100x of P6C4 Pacbio long reads (Caenorhabditis
elegans).

The absence of results from Abruijn and Ra is caused by an error during assembly. The absence of results from SGA results the
creation of a file containing all the non assembled long reads.

SLR assemblers

DBG2OLC Spades Cerulean
Metrics run1 run2 run1 run2 run1

contigs (>=1000pb) 435 17 569 – 10 330 –
N50 644 079 8 680 – 18 309 –

Largest contig 2 338 886 115 038 – 142 723 –
Execution time 11h2m52s 6h55m42s – 15min34s –

Total length 115 756 904 95 943 011 – 96,585,462 –
Genome fraction 90.96 88.1 – 93.06 –

Table 29: Quast results generated from various SLR assemblers with 100x of P6C4 Pacbio long reads, contigs generated from
short reads and Illumina short reads (Caenorhabditis elegans).

The lack of results for the Spades and Cerulean assemblers leads respectively to an insufficient available RAM and an excessive
execution time.

33/38

6 Discussion

To measure the quality of the genome assembly, two metrics are fundamental: the number of contigs in the assembly (whose
lengths are greater or equal to 1000 bp) and the genome fraction. Ideally, the number of contigs should be equal to the number
of chromosomes and the genome fraction should be 100%. Therefore, the closer the number of contigs to the number of
chromosomes and the genome fraction to 100% the better. However, notice that these two metrics are not necessarily correlated
and that a genome fraction close to 100% can be obtained with a large number of small, badly assembled contigs. For this
reason, we consider that the number of contigs must be given the priority when assessing the assembly quality. The assemblers
are thus ranked, first, according to this parameter, then using the genome fraction and, finally, according to the execution
time.

In this report, for practical purposes, we consider that the genome assembly is a success if the number of contigs is less than or
equal to 3 times the number of chromosomes (admittedly, the choice of 3 is somewhat arbitrary) and if the genome fraction is
larger than 85%.

Another point to take into consideration, is the number of times the assemblers fail to provide a result (for various reasons that
are listed in the ”Results” section).

6.1 LRO assemblers

Table 30 shows the number of tests failed by the LRO assemblers.

LRO Assembler # failures
Miniasm 0
Newbler 0
Smartdenovo 0
Celera 2
Abruijn 3
RA 3
SGA 4
Falcon 5

Table 30: Number of tests failed by the LRO assemblers.

Table 31 below shows the ranking of the different LRO assemblers for the 12 tests described in the ”Results” section. Assemblers
are ranked, as indicated above, first according to the number of contigs, then according to the genome fraction.

rank Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
1 RA Abruijn Smartdenovo Abruijn Smartdenovo Abruijn
2 Smartdenovo Smartdenovo RA Miniasm Abruijn Miniasm
3 Abruijn Miniasm Miniasm Smartdenovo RA Smartdenovo
4 Miniasm RA Celera Celera Miniasm Falcon
5 Falcon Falcon Newbler RA Celera RA
6 Newbler Newbler SGA Falcon SGA Celera
7 Celera Celera Falcon Newbler Newbler SGA
8 SGA SGA Abruijn SGA Falcon Newbler

rank Test 7 Test 8 Test 9 Test 10 Test 11 Test12
1 Miniasm Abruijn Smartdenovo RA Abruijn Smartdenovo
2 Smartdenovo RA Miniasm Smartdenovo Celera Miniasm
3 Abruijn Miniasm Abruijn Miniasm Smartdenovo Celera
4 RA Smartdenovo Celera Celera Miniasm Falcon
5 Celera Celera Falcon Newbler Newbler Newbler
6 Newbler SGA Newbler SGA SGA Abruijn
7 SGA Falcon SGA Abruijn RA SGA
8 Falcon Newbler RA Falcon Falcon RA

Table 31: Ranks of the LRO assemblers in the 12 tests. Assemblers in italic are those that did not provide a result for the
corresponding test, assemblers in bold are those that provided a ”good” genome assembly (as defined above). Notice: all

assemblers that failed the test have the same 8th rank.

34/38

In Test1, the 10x coverage provided by the long read is insufficient to assemble the genome whereas a 20x coverage (Test2)
allows the best assemblers to obtain good genome assemblies (1 contig with genome fractions >91%). The same is true for the
assembly of the E. coli k-12 genome, at least when reads from the PBS new chemistry P6-4 or ONT Minion are used (Tests
5, 6 7). A 100x coverage (Test 6 and 9) with the old PBS chemistry (P4-C2) allows the best LRO assemblers to obtain good
assembly of the E. coli k-12 genome (1 or 2 contigs with genome fraction >96%) and S. cerevisiae genome (20-25 contigs with
genome fractions >94% – recall that S. cerevisiae has 16 chromosomes).

Table 32 below shows the mean ranking and the number of ”good” genome assemblies for the 8 LRO assemblers. Clearly,
there are 3 groups. The first group {Smartdenovo, Miniasm, Abruijn} provides the best results, the second group {RA, Celera}
provides intermediate results and the last one {Newbler, Falcon, SGA} provides the worst results. In the first group, the mean
ranking of Abruijn would be better if this assembler did not fail to provide a result for 25% of the tests.

LRO Assembler mean rank # successes
Smartdenovo 2.08 3
Miniasm 2.75 5
Abruijn 3.33 4
RA 4.25 0
Celera 4.67 0
Newbler 6.17 0
Falcon 6.33 0
SGA 7.08 0

Table 32: Mean rank of the LRO assemblers and number of ”good” genome assembly they provide.

6.2 SLR assemblers

In the tables of the ”Results” section, run1 and run2 correspond, respectively, to the genome assembly using both long and short
reads, and the same genome assembly using only the short reads. In all observed cases, combining long and short reads improve
the results, sometimes considerably. It must be noted that adding the long reads improves coverage. However, this addition is
relatively marginal (10x or 20x), except for tests 9 and 12 where a 100x coverage is added with the long reads.

Spades and Cerulean fail to provide a result for the largest genome (C. elegans) due to a lack of RAM or excessive running
time.

Table 33 shows the results of the 3 SLR assemblers for the 12 tests. SLR assemblers, in terms of genome assembly, are globally
less efficient than LRO assemblers (their only ”success” is for the assembly of the genome of Acinobacter sp. ADP1).

rank Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
1 DBG2OLC Spades Cerulean Cerulean Spades Spades
2 Spades DBG2OLC Spades Spades Cerulean Cerulean
3 Cerulean Cerulean DBG2OLC DBG2OLC DBG2OLC DBG2OLC

rank Test 7 Test 8 Test 9 Test 10 Test 11 Test12
1 Cerulean DBG2OLC DBG2OLC Spades DBG2OLC DBG2OLC
2 Spades Spades Spades Cerulean Cerulean Cerulean
3 DBG2OLC Cerulean Cerulean DBG2OLC Spades Spades

Table 33: Ranks of the SLR assemblers in the 12 tests. Assemblers in italic are those that did not provide a result for the
corresponding test, assemblers in bold are those that provided a ”good” genome assembly (as defined above). Notice: all

assemblers that failed the test have the same 8th rank.

Table 34 shows the mean ranking of the SLR assemblers and their number of successes. Cerulean appears slightly less efficient
than Spades or DBG2OLC.

SLR Assembler mean rank # successes
DBG2OLC 2.08 2
Spades 2.08 2
Cerulean 2.25 0

Table 34: Mean rank of the SLR assemblers and number of ”good” genome assembly they provide.

35/38

Figure 3. Assembly performance per species in different TGS platforms and under different conditions. The best
LRO and SLR assemblers are displayed in the boxes for every condition type.

7 Conclusion

In this report, we have discussed the best practices in long reads assembly. Ideally the results of different assembly performance
should help the researchers choose the best software, taking into consideration the nature of the available input data. We chose
model organisms with robust previous assembly genomes and we compared them in different conditions: TSG platforms,
coverages and polymerase (Figure 3). However, in the case of LRO assemblers when we started with moderate long reads
coverage, Smartdenovo software performed the best, fast and often gives low number of contigs and accurate genome result.
Nevertheless, in small bacterial genomes, Abrujin software gave also very good results.
As far as SLR are concerned, Spades and Cerulean software performed better in bacterial genomes, but in eukaryote genomes
DBG2OLC software gave the best results.
Finally, we should improve the same performance software analysis in other model organisms with a larger genome size and
greater content in transposable elements, such as plants or vertebrates, to complete the guideline practices for software genome
assemblies. Include others long read correction software before the assembly, it’s also strongly recommended.

36/38

References

1. The International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature
409:860–921 (2001).

2. Venter JC, et al.. The sequence of the human genome. Science 291(5507):1304-51 (2001).

3. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1092 human genomes. Nature 491:56-65
(2012).

4. MetaHIT Consortium. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 32(8):834-
841 (2014).

5. Schatz MC, et al.. Assembly of large genomes using second- generation sequencing. Genome research 20, 1165-1173
(2010).

6. Nagarajan N, P. M. Sequence assembly demystified. Nat Rev Genet 14:157–167 (2013).

7. Loman NJ, et al.. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods
12(8):733-5 (2015).

8. Koren S, et al.. Reducing assembly complexity of microbial genomes with single- molecule sequencing. Genome Biology
14(9): R101 (2013).

9. Rhoads A, et al.. Pacbio sequencing and its applications. Genomics Proteomics Bioinformatics; 13(5): 278–289. (2015).

10. Chen X, et al.. The architecture of a scrambled genome reveals massive levels of genomic rearrangement during
development. Cell 158, 1187-1198 (2014).

11. Cao H, et al.. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping
technology. Gigascience 3, 34 (2014).

12. Chaisson MJ, et al.. Resolving the complexity of the human genome using single- molecule sequencing. Nature 517,
608-611 (2015).

13. Sergey Koren, et al.. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature
Biotechnology 30(7):693-700 (2012).

14. Chin, J. Falcon genome assembly tool kit manual. https://github.com/PacificBiosciences/FALCON/
wiki/Manual (Jan. 2016).

15. Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. arXiv:1512.01801. (2015).

16. Margulies M, et al.. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437: 376–380.
(2005).

17. Simpson JT, D. R. Efficient de novo assembly of large genomes using compressed data structures. doi:
10.1101/gr.126953.111 Genome Res. (2011).

18. Ruan, J. Readme. https://github.com/ruanjue/smartdenovo (Mar. 2016).

19. Yu Lin, et al.. Assembly of long error-prone reads using de bruijn graphs. http://dx.doi.org/10.1101/048413 (2016).

20. Ivan Sović, et al.. Fast and sensitive mapping of nanopore sequencing reads with graphmap. Nature Communications
7,Article number:11307;doi:10.1038/ncomms11307 (2016).

21. Chengxi Ye, et al.. Dbg2olc: Efficient assembly of large genomes using the compressed overlap graph. arXiv:1410.2801.
(2015).

22. Anton Bankevich, et al.. Spades: A new genome assembly algorithm and its applications to single-cell sequencing. Journal
of Computational Biology. 19(5). (2012).

23. Viraj Deshpande, et al.. Cerulean: A hybrid assembly using high throughput short and long reads. arXiv:1307.7933.
(2013).

24. Salmela L., R. E. Lordec: accurate and efficient long read error correction. Bioinformatics. 2014;30(24):3506–14. doi:
10.1093/bioinformatics/btu538 pmid:25165095; PubMed Central PMCID: PMC4253826. (2014).

37/38

https://github.com/PacificBiosciences/FALCON/wiki/Manual
https://github.com/PacificBiosciences/FALCON/wiki/Manual
https://github.com/ruanjue/smartdenovo

25. Alexey Gurevich, et al.. Quast: quality assessment tool for genome assemblies. Bioinformatics 29(8), 1072-1075. (2013).

26. Delcher AL, et al.. Alignment of whole genomes. Nucleic Acids Res. 1999 Jun 1;27(11):2369-76. PMID:10325427 ;
PMCID:PMC148804 (1999).

38/38

	Introduction
	Background
	Evaluated assemblers
	LRO assemblers (Long Read Only)
	SLR Assemblers (Short and Long Read)

	Method
	Evaluated genomes
	Datasets
	Hardware resources
	Long reads correction
	Evaluation of assemblies

	LRO assemblers (Long Read Only)
	Celera Assembler
	Falcon
	Miniasm
	Newbler
	SGA Assembler
	Smartdenovo
	Abruijn
	Ra

	SLR assemblers (Short and Long Read)
	DBG2OLC
	Spades
	Cerulean

	Results
	Evaluation of assembly
	Benefit of long reads in hybrid assembly
	Testing Data Sets
	Test 1: Acinetobacter sp, ADP1, run5; Minion 10x
	Test 2: Acinetobacter sp, ADP1, run6; Minion 20x
	Test 3: Escherichia coli k-12, reads Pacbio 10x (P4-C2)
	Test 4 : Escherichia coli k-12, reads Pacbio 100x (P4-C2)
	Test 5: Escherichia coli k-12, reads Pacbio 10x (P6-C4)
	Test 6: Escherichia coli k-12, reads Pacbio 100x (P6-C4)
	Test 7: Escherichia coli k-12, Minion 20x
	Test 8: Saccharomyces cerevisae W303, Pacbio reads 10x (P4-C2)
	Test 9: Saccharomyces cerevisae W303, Pacbio reads 100x (P4-C2)
	Test 10: Saccharomyces cerevisae W303, ONT reads 20x
	Test 11: Caenorhabditis elegans, Pacbio reads 10x (P6-C4)
	Test 12: Caenorhabditis elegans, Pacbio reads 100x (P6-C4)

	Discussion
	LRO assemblers
	SLR assemblers

	Conclusion
	References

