There is a newer version of this record available.

Dataset Open Access

Jingju a cappella singing dataset part1

Rong Gong; Rafael Caro Repetto; Yile Yang


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.344932</identifier>
  <creators>
    <creator>
      <creatorName>Rong Gong</creatorName>
      <affiliation>Music Technology Group - Universitat Pompeu Fabra</affiliation>
    </creator>
    <creator>
      <creatorName>Rafael Caro Repetto</creatorName>
      <affiliation>Music Technology Group - Universitat Pompeu Fabra</affiliation>
    </creator>
    <creator>
      <creatorName>Yile Yang</creatorName>
      <affiliation>Music Technology Group - Universitat Pompeu Fabra</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Jingju a cappella singing dataset part1</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2017</publicationYear>
  <subjects>
    <subject>Beijing opera</subject>
    <subject>annotation</subject>
    <subject>phoneme</subject>
    <subject>syllable</subject>
    <subject>phrase</subject>
    <subject>singing voice</subject>
    <subject>praat</subject>
    <subject>textgrid</subject>
    <subject>wave audio</subject>
    <subject>jingju</subject>
    <subject>MTG</subject>
    <subject>C4DM</subject>
    <subject>a cappella</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2017-03-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/344932</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.780559</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/mdm-dtic-upf</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/mir</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/mtgupf</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by-nc/4.0/legalcode">Creative Commons Attribution Non Commercial 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;&lt;strong&gt;Description:&lt;/strong&gt;&lt;br&gt;
This dataset is a collection of boundary annotations of a cappella singing performed by Beijing Opera (Jingju, 京剧) professional and amateur singers.&amp;nbsp;&lt;/p&gt;

&lt;p&gt;The boundaries have been annotated in Praat TextGrid format and&amp;nbsp;in a hierarchical way:&lt;/p&gt;

&lt;ol&gt;
	&lt;li&gt;Line (phrase),&lt;/li&gt;
	&lt;li&gt;syllable,&lt;/li&gt;
	&lt;li&gt;phoneme&lt;/li&gt;
&lt;/ol&gt;

&lt;p&gt;singing units have been annotated to a jingju&amp;nbsp;a cappella singing audio dataset.&lt;/p&gt;

&lt;p&gt;The corresponding audio files are the a-cappella singing arias recordings, which are stereo or mono, sampled at 44.1 kHz, and stored as wav files. The wav files are recorded by two institutes: those file names ending with &amp;lsquo;qm&amp;rsquo; are recorded by C4DM Queen Mary University of London; others file names ending with &amp;lsquo;upf&amp;rsquo; or &amp;lsquo;lon&amp;rsquo; are recorded by MTG-UPF. Additionally, another collection of 15 clean singing recordings is included in this dataset. They are extracted from the commercial recordings which originally contains karaoke accompaniment and mixed versions.&amp;nbsp;Please contact the authors to obtain these 15 recordings.&lt;/p&gt;

&lt;p&gt;If you use this audio dataset in your work, please cite as well the following publication:&lt;/p&gt;

&lt;blockquote&gt;
&lt;p&gt;D. A. A. Black, M. Li, and M. Tian, &amp;ldquo;Automatic Identification of Emotional Cues in Chinese Opera Singing,&amp;rdquo; in 13th Int. Conf. on Music Perception and Cognition (ICMPC-2014), 2014, pp. 250&amp;ndash;255.&lt;/p&gt;
&lt;/blockquote&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Details:&lt;/strong&gt;&lt;br&gt;
Annotation format, units, parsing code and other details please refer to https://github.com/MTG/jingjuPhonemeAnnotation&lt;/p&gt;

&lt;p&gt;&lt;br&gt;
&lt;strong&gt;License:&lt;/strong&gt;&lt;br&gt;
Textgrid annotations are licensed under Creative Commons Attribution-NonCommercial&amp;nbsp;4.0 International License.&lt;/p&gt;

&lt;p&gt;Wav audio ending with &amp;lsquo;upf&amp;rsquo; or &amp;lsquo;lon&amp;rsquo; are licensed under&amp;nbsp;Creative Commons Attribution-NonCommercial&amp;nbsp;4.0 International.&lt;/p&gt;

&lt;p&gt;For the license of .wav audio ending with &amp;lsquo;qm&amp;rsquo; from C4DM Queen Mary University of London, please refer to this page http://isophonics.org/SingingVoiceDataset&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Contact information:&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;Rong Gong: rong&amp;lt;dot&amp;gt;gong&amp;lt;at&amp;gt;upf&amp;lt;dot&amp;gt;edu&lt;/p&gt;

&lt;p&gt;Rafael Caro Repetto: rafael&amp;lt;dot&amp;gt;caro&amp;lt;at&amp;gt;upf&amp;lt;dot&amp;gt;edu&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/FP7/267583/">267583</awardNumber>
      <awardTitle>Computational models for the discovery of the world's music</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
728
465
views
downloads
All versions This version
Views 728265
Downloads 46581
Data volume 171.9 GB70.5 GB
Unique views 627254
Unique downloads 14054

Share

Cite as