

Keystone Identity Service
in Openstack

August 2015

Author:
Paweł Pamuła
pawel.pamula@gmail.com

Supervisor:
Marek Denis

CERN Openlab Summer Student Report 2015

CERN openlab Summer Student Report 2015

Project Specification

CERN runs a large scale OpenStack based cloud on over 3,200 hypervisors to provide computing
resources for users on demand. Over 1 million virtual machines have been created during the
past 18 months. As part of the project with Rackspace to enable users to be able to use multiple
clouds in a transparent fashion, OpenStack tools need to be enhanced to support these new use
cases.

The project involves enhancing Keystone Identity Service, which interacts with federated clouds,
working with the OpenStack community and CERN administrators to define the right solutions
along with implementation and testing in the CERN environment.

CERN openlab Summer Student Report 2015

Abstract

The aim of this report is to describe and document the configuration steps and development
process of the Openlab Summer Student project. The report explains basic ideas of cloud
computing. Furthermore, it introduces Openstack as a software for deploying private clouds.
Openstack architecture is further explained. The focus is put on Keystone Identity Service and
its architecture and role that it serves in the whole Openstack environment.

Moreover, federation as a mechanism for establishing trusts between identity providers and
OpenStack clouds is described. Eventually, further details are provided on token revocation
mechanism. The last part describes the means for testing and debugging Openstack
deployments.

CERN openlab Summer Student Report 2015

Table of Contents

1 Introduction .. 6

1.1 Cloud Computing ... 6

1.2 Service models... 6

1.3 Deployment models ... 7

2 Introduction to Openstack .. 8

2.1 Overview .. 8

2.2 Components of Openstack .. 8

2.3 Keystone Identity Service .. 9

2.3.1 Keystone components ... 9

2.3.2 Keystone workflow ... 9

2.3.3 UUID Tokens ... 10

2.3.4 Fernet Tokens .. 11

2.3.5 PKI Tokens .. 11

2.4 Installing Openstack with Devstack ... 11

2.4.1 Virtual Machine .. 11

3 Federation in Openstack .. 12

3.1 SAML ... 13

3.2 Creating Federation in Keystone ... 14

3.2.1 Configuring Apache for Shibboleth .. 14

3.2.2 Configuring shibboleth2.xml .. 15

3.2.3 Configuring Federation in Keystone .. 16

3.2.4 Openstack CLI ... 16

3.2.5 Creating IdPs, mappings and protocol .. 16

3.2.6 Keystone Python client ... 17

4 Keystone Architecture .. 18

4.1 Token revocation.. 19

CERN openlab Summer Student Report 2015

4.1.1 Revocation lists .. 19

4.1.2 Revocation event ... 20

4.2 Testing ... 21

4.3 Debugging .. 21

4.3.1 Keystone tests ... 21

4.3.2 Live deployments ... 22

5 Conclusions ... 22

CERN openlab Summer Student Report 2015

6 | P a g e

1 Introduction

1.1 Cloud Computing

Cloud computing is an important technology which enables a ubiquitous access to a shared pool
of both hardware and software resources (e.g., networks, servers, storage, services, and
applications). The aforementioned resources can be dynamically provisioned, released and
redistributed with minimal effort or human interaction. According to the NIST, the Cloud has
five essential characteristics.

 On-demand self-service: a user can be provided with computing resources without
interaction with each service provider

 Broad network access: resources are accessible over the network and implement
standardised protocols of communications

 Resource pooling: the provider serves multiple tenants, who are given access to virtual
resources and have no control over their physical location. The user can be granted the
ability to control the location at a higher level of abstraction.

 Rapid elasticity: the resources can easily scale outward and inward, according to the
users' needs.

Measured service: the resources can be effectively monitored, controlled and measured in
terms of performance at different levels of abstraction, appropriate to the type of service (e.g.
storage, bandwidth).

1.2 Service models

Figure 1. Service models in cloud computing

CERN openlab Summer Student Report 2015

7 | P a g e

Cloud computing architectures can be divided into three main models:

a) Infrastructure as a service (IaaS): the most basic model which concerns itself with providing
hardware resources (physical or virtual machines)

b) Platform as a service (PaaS): the model facilitates the deployment of software by an
independent developer without the need of managing the underlying hardware. Users are
provided with databases, web servers and development tools, to name a few

c) Software as a service (SaaS): in this model, users can access software on remote servers. The
provider is in charge of both platform and infrastructure on which the application runs

Openstack is mainly deployed as Infrastructure as a Service, therefore we are primarily
interested in this particular model. Below there is an overview of services for which a user is
responsible in each model.

Figure 2. Comparison of different service models

1.3 Deployment models

There are four main deployment models. Private cloud is provisioned for exclusive use by
a single organization. On the other hand, public cloud is available to the general public. There
also exist community cloud, where the infrastructure is provisioned for use by a community that
share the same concerns. Eventually, there is the hybrid cloud model which combines two or
more aforementioned models.

CERN openlab Summer Student Report 2015

8 | P a g e

2 Introduction to Openstack

2.1 Overview

Openstack is an open-source cloud computing software platform which provides an IaaS service
model. It consists of a group of projects that allow managing storage and networking resource
through a web-based dashboard, CLI tools, or a REST API.

CERN has been running Openstack in production for managing its private cloud since 2013.

2.2 Components of Openstack

Openstack consists of a number of components. At CERN, there are deployed 7 components:

 Openstack Compute (Nova): allows the user to create and manage virtual servers using
the machine images.

 Block Storage (Cinder): provides persistent block storage to running instances.

 Identity Service (Keystone): provides an authentication and authorization service for
other Openstack services.

 Image Service (Glance): provides the discovery, registration and delivery services for the
disk and server images.

 Dashboard (Horizon): provides a web-based portal to interact with all the underlying
services.

 Orchestration (Heat): implements an orchestration engine to launch multiple composite
cloud applications.

Figure 3 Openstack architecture

CERN openlab Summer Student Report 2015

9 | P a g e

2.3 Keystone Identity Service

Keystone Identity module is of a particular interest to this project. Its purpose is to establish the
identity of a user based on credentials and manage the actions that he can perform.

Keystone integrates functions for authentication, authorization, registration of tenants and
users, granting tokens, and creating polices for users and services. The important thing is that
Keystone is used between all Openstack services and provides a catalogue of available services
and locations of API endpoints.

2.3.1 Keystone components

 User: digital representation of a person, system, or service that uses Openstack cloud.
Users are assigned to a particular tenant, granted a role and associated information as
username, password and email

 Tenant (Project): a container to group and isolate resources and users. It has to be
specified in order to make requests to services. A tenant may map to a customer,
account or organization.

 Role: it includes a set of privileges for performing specific actions that can be assigned to
a specific user.

 Token: a short message returned by Keystone and used for accessing services. Each
token has a scope which describes which resources are accessible with it.

 Endpoint: an address accessible over a network, described by URL, from where it is
possible to make requests to Openstack services.

 Service: provides one or more endpoints through which users can access resources and
perform operations. A service is identified by: identification number, name, service type,
description and are associated with endpoints

2.3.2 Keystone workflow

 user launches client for the intended service and provides user credentials and an
endpoint for the service location

 client makes a request to Keystone if a user has no token

 Keystone responds with an unscoped token if the project was not specified or with
a scoped token otherwise. Unscoped token can be used only to list available projects
and access to any services will not be granted. Once a user specifies project id, a scoped
token can be returned by Keystone

 from the list returned by Keystone, the user chooses the endpoint and makes a request,
including a scoped token

 A service returns a token to Keystone or validates it by itself, depending on token
architecture

CERN openlab Summer Student Report 2015

10 | P a g e

 If token is correctly validated, Keystone returns the project and the associated roles

 If the user is granted with an appropriate role and is authorised, the response is
returned to a client

Figure 4 Authentication in Keystone

There are many advantages of this approach, namely this pattern provides a single point of
authorization for all Openstack services and users always use the same interface. Moreover,
users can access all of the services with a single authentication. It supports various
authentication protocols with a common API on top.

2.3.3 UUID Tokens

UUID tokens’ payload consists of 32 byte random string, thus it provides only uniqueness and
has to be validated with Keystone, which maps a token to an identity. It also requires
persistence.

CERN openlab Summer Student Report 2015

11 | P a g e

2.3.4 Fernet Tokens

Fernet tokens are non-persistent, which means that they do not need to be persisted to
a database. They contain minimal identity information and a dynamic authorization context –
a user ID or federation ID, project ID, domain ID, and a creation timestamp. They typically fall
within a range of 180 and 240 bytes. Payload is encrypted using a symmetric cipher and is
cryptographically signed. In order to configure a deployment to use Fernet tokens, it is
necessary to modify the keystone configuration file (/etc/keystone/keystone.conf):

[token]

provider = keystone.token.providers.fernet.Provider

It is also required to initialize a key repository:

> keystone-manage fernet_setup

It populates key repository directory with a pair of keys for encrypting and decrypting tokens.

2.3.5 PKI Tokens

Tokens based on public key infrastructure consist of whole validation response from Keystone
and additional data as they are supposed to be validated offline. It results in great size (more
than 1kB each) and poses many problems with handling revocation events, therefore these
tokens are not popular within Openstack deployments.

2.4 Installing Openstack with Devstack

This section will be devoted to preparing environment with Openstack installed on it.

2.4.1 Virtual Machine

Openstack should be installed on a minimal version of the supported distribution. In this project
Ubuntu 14.04 LTS has been used.

 create an image with a distribution

https://openstack.cern.ch/dashboard/project/images/

 launch a virtual machine via Dashboard. It is recommended to select at least
m1.medium flavour and boot the machine from prepared image

https://openstack.cern.ch/dashboard/project/instances/

 connect to the machine via ssh

> ssh ubuntu@instance_name.cern.ch

 install git

> sudo apt-get install git

CERN openlab Summer Student Report 2015

12 | P a g e

 download and install devstack. The installation script will prompt for various passwords
during the first stage of the installation.

> git clone https://git.openstack.org/openstack-dev/devstack

> cd devstack; ./stack.sh

3 Federation in Openstack

The Keystone Federation is the mechanism that allows establishing trusts between identity
providers and Openstack clouds. In result a user can securely access resources with single
credential which is authenticaded by a trusted provider. The main advantage is that a user does
not have to provision additional identities and re-login every time he wants to access resources.

There are several reasons the federation mechanism was developed and implemented in
Keystone. First of all, it is inconvenient to deal with multiple tokens and administrating identities
across cloud service providers. Furthermore, it poses security risks to issue new identities as well
as use mass centralized storage for storing user credentials. Therefore, federated management
techniques have been developed to share identity attributes without centrally storing this
information.

Services must agree on a common protocol of exchanging information. There are several
technologies that facilitate creating federation including Security Assertion Markup Language
(SAML), OAuth, OpenID. We will focus on SAML, which was used to create a federation in our
test environment.

There are three main building blocks of an identity federation:

 Identity Provider (IdP): a third party service (in our case testshib.org)that is trusted by
the Identity API to authenticate identities.

{

 "identity_provider": {

 "description": None,

 "enabled": True,

 "id": "testshib",

 "remote_id": [u'https://idp.testshib.org/idp/shibboleth']

 }

}

 Protocol: contain information that dictates which mapping rules to use for an incoming
requuest. Identity Providers can support multiple protocols.

CERN openlab Summer Student Report 2015

13 | P a g e

{

 "protocol": {

 "id": "saml2",

 "mapping_id": "cern_mapping"

 }

}

 Mapping: a set of rules to map federation protocol attributes to Identity API objects. It
translates remote atttributes to local attributes (Keystone entities). Below there is an
example of such mapping, which indicates that anyone from the given set of e-mails
authenticated by testshib.org will be mapped to a user with 'local_id' and assigned to a
particular group.

{

 "mapping": {

 "id": "cern_mapping",

 "rules": [

 u'remote': [{u'type': u'eppn',

 u'any_one_of': [u'myself@testshib.org']}],

 u'local': [{u'user': {u'id': u'local_id'}},

 {u'group': {u'id': u'0cca258729c94efca447371e30d62c39'}

]

 }

}

Federated users do not exist in Keystone, they exists on an IdP, who only returns attributes
related to an identity. We utilize mappings to establish relationships between Keystone
attributes and IdP attributes. In the aforementioned example, a federates user can authenticate
with an IdP and mapped to a particular group, which will cause inheriting roles from the group.

3.1 SAML

Security Assertion Markup Language is a widely used authentication technique. The core of the
standard are assertions. An assertion is an encrypted XML file that summarises identity and
attribute information.

SAML protocol operates in the following way

 the user tries to access an Openstack service (the Service Provider)

 the user receives HTTP 302 code (redirection) and SAML request

CERN openlab Summer Student Report 2015

14 | P a g e

 the client forwards the request to the Identity Provider

 in case there is no current session, the user provides necessary credentials

 the IdP returns a SAML assertion with a HTTP success code.

 the assertion can be now redirected to a particular Service Provider

 the user can access protected resource

3.2 Creating Federation in Keystone

Our goal is to set up a Federation in Keystone, where Keystone is the Service Provider (SP). We
will assume that devstack is already installed on virtual machine.

First step is to configure Apache to use federation capable authentication method. For this we
will use Shibboleth implementation.

3.2.1 Configuring Apache for Shibboleth

 Install libapache2-mod-shib2

> apt-get install libapache2-mod-shib2

 Edit virtual host configuration

> sudo nano /etc/apache2/sites-enabled/keystone.conf

 add following lines to <VirtualHost *:5000> section:

WSGIScriptAliasMatch

^(/v3/OS-FEDERATION/identity_providers/.*?/protocols/.*?/auth)$
/var/www/keystone/main/$1y

SSLEngine on

SSLCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem

SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key

 add following sections to the keystone.conf file

<Location /Shibboleth.sso>

 SetHandler shib

</Location>

<LocationMatch /v3/OS-FEDERATION/identity_providers/.*?/protocols/saml2/auth>

 ShibRequestSetting requireSession 1

 AuthType shibboleth

CERN openlab Summer Student Report 2015

15 | P a g e

 ShibExportAssertion Off

 Require valid-user

</LocationMatch>

<LocationMatch /secure>

 ShibRequestSetting requireSession 1

 AuthType shibboleth

 ShibExportAssertion Off

 Require valid-user

</LocationMatch>

 Enable the ssl and shib2 modules

> sudo a2enmod ssl

> sudo a2enmod shib2

 Restart Apache service

> sudo service apache2 restart

3.2.2 Configuring shibboleth2.xml

 Generate certificates

> sudo shib-keygen -y <number of years>

 Download SAML Metadata from the server by going to the following address

http://instance_name.cern.ch/Shibboleth.sso/Metadata

 Upload the metadata to Identity Provider Service. It will register our Service Provider

http://www.testshib.org/register.html

 Backup the shibboleth configuration file

> sudo cp /etc/shibboleth/shibboleth2.xml
etc/shibboleth/shibboleth2.xml_backup

 Generating shibboleth.xml file on testshib.org is not necessary, we can edit the
configuration file manually.

 Set entityID parameter in the ApplicationDefaults tag and remove REMOTE_USER
parameter. It is important to specify a port in the entityID parameter. Parameter ECP allows
to log in not only using web browsers.

CERN openlab Summer Student Report 2015

16 | P a g e

<ApplicationDefaults entityID="https://instance_name.cern.ch:5000/shibboleth"
ECP="true">

 Restart Apache service

> sudo service apache2 restart

 We can verify the correctness of the installation by proceeding to:

https://instance_name.cern.ch:5000/secure/

It will result in an error after authentication which is expected.

3.2.3 Configuring Federation in Keystone

Change the authentication method in /etc/keystone/keystone.conf files:

[auth]

methods = external,password,token,oauth1,saml2

3.2.4 Openstack CLI

In order to start using Openstack command line interface, it is mandatory to set up required
environmental variables. If we want to have administrator privileges, there is a predefined file
with required variables that needs to be sourced:

> source devstack/accrc/admin/admin

It might be necessary to Identity API version from 2 to 3 in the admin file:

> export OS_AUTH_URL="http://instance_name.cern.ch:35357/v3"

> export OS_IDENTITY_API_VERSION=3

> export OS_PROJECT_NAME="demo"

> export OS_PROJECT_DOMAIN_NAME="default"

At this points we can access Openstack CLI:

> openstack

List of available commands:

(openstack)> help

3.2.5 Creating IdPs, mappings and protocol

We will assume that Openstack CLI is used.

> identity provider create testshib

CERN openlab Summer Student Report 2015

17 | P a g e

> mapping create --rules mapping.json cern_mapping

> federation protocol create --identity-provider testshib --mapping
cern_mapping saml2

> identity provider set --remote-id https://idp.testshib.org/idp/shibboleth
testshib

Mapping.json file has the following structure:

[

 {

 "local": [

 {"user": {"id": "user"}},

 {"group": {"id": "0cca258729c94efca447371e30d62c39"}}],

 "remote": [{

 "type": "eppn",

 "any_one_of": ["myself@testshib.org"]

 }]

 }

]

In the first step we create an identity provider testshib. Then a mapping cern_mapping is
created with the rules from mapping.json file. Now, we can create a federation protocol that will
connect an identity provider and mapping rules. In our case it is called saml2 and the name has
to be consistent with the name that we included in the keystone.conf file.

Eventually, we can set remote id for the identity provider. At this point, we can finally perform
a federated authentication.

3.2.6 Keystone Python client

In order to authenticate yourself with Testshib identity, it is necessary to install python client
and federation authentication plugins for Openstack. First of all, we need to install basic
keystone client:

> pip install python-keystoneclient

Then, it is necessary to install Openstack Identity Authentication Library and Federation
authentication plugins for Openstack. As they are not available in the repositories, it is
recommended to download sourcecode directly from GitHub:

> git clone https://github.com/openstack/keystoneauth-saml2.git

> git clone https://github.com/openstack/keystoneauth.git

CERN openlab Summer Student Report 2015

18 | P a g e

It is possible now to use Python bindings for the authentication process.

from keystoneclient_saml2.v3 import saml2

from keystoneclient import session

from keystoneclient.v3 import client

from keystoneauth1.auth.identity.v3 import password

In order to authenticate yourself the following commands need to be executed:

s = session.Session(verify=False)

plugin = password.Password(**CRED)

access = plugin.get_access(s)

CRED variable is a dictionary that consists of values such as authentication URL, user id,
password and project id.

The access object contains auth_token among others. In order to perform actions, we need
a client, which is accessible with the following commands:

endpoint = 'http://instance-name.cern.ch:5000/v3'

token = access.auth_token

client = client.Client(token=token, endpoint=endpoint)

At this point, client allows us accessing same services as Openstack CLI.

4 Keystone Architecture

Keystone is organized as a group of services exposed to endpoints. There are 6 services:

 Identity: validates users' credentials

 Resource: provides data about projects

 Assignment: provides data about roles and role assignments between objects from
Identity and Resource services

 Token: validates and manages Tokens

 Catalog: provides an endpoint registry

Most of the services have Manager class (core.py) which provides the API functions of the
service. Manager class is decorated with @dependency.provider decorator. It assures that only
one object of Manager class is created in the system. With @dependency.requires decorator we
can safely use APIs of other services. However, it is not called directly but by so called controller
(controllers.py) which uses a necessary API.

CERN openlab Summer Student Report 2015

19 | P a g e

Figure 5 Keystone Architecture

Keystone provides different backends that each service can be configured to use. Different
backends are available: key-value storage (KVS), a SQL backend (accessed through SQLAlchemy
library; most focus was put on this backend), LDAP backend.

In order to efficiently use multiple backends, there exists the idea of a driver, which, according
to the specified configuration in CONF variable, knows how to interact with appropriate
backend.

4.1 Token revocation

For every type of token, there need to exists a mechanism that allows us invalidate tokens and
prevent users using these particular tokens accessing resources.

As explained in previous chapters, token are issued every time a non-authenticated user tries to
access resources.

A new entry is added to a token database. At this point we assume that SQL backend is used.

+-------------------------------+---------------------+-------+-------------------------------+

| id | expires | valid | user_id |

+-------------------------------+---------------------+-------+-------------------------------+

| acc2b54 . . . 5 | 2015-08-27 14:46:02 | 1 | e237927 . . . a |

+-------------------------------+---------------------+-------+-------------------------------+

4.1.1 Revocation lists

Revocation lists are the most simple mechanism of revoking tokens. When PersistenceManager
gets a request for deleting a token:

delete_token(self, token_id)

CERN openlab Summer Student Report 2015

20 | P a g e

it selects the token from the database and sets value in the `valid` column to False and saves the
token on the revocation list. The token itself is added to the list, against incoming tokens can be
compared for validation purposes.

This approach is straightforward but has its drawbacks. First of all, it does not work with Fernet
tokens which are non-persistent and are not present in the database. Second of all, it may cause
performance issue when multiple tokens has to be revoked.

4.1.2 Revocation event

Instead of invalidating every single token, the revocation event is created along a specific action,
such as deleting a user, project or identity provider.

There is a revocation_event table in SQL database:

+-----------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-----------------+-------------+------+-----+---------+-------+

| id | varchar(64) | NO | PRI | NULL | |

| domain_id | varchar(64) | YES | | NULL | |

| project_id | varchar(64) | YES | | NULL | |

| user_id | varchar(64) | YES | | NULL | |

| role_id | varchar(64) | YES | | NULL | |

| trust_id | varchar(64) | YES | | NULL | |

| consumer_id | varchar(64) | YES | | NULL | |

| access_token_id | varchar(64) | YES | | NULL | |

| issued_before | datetime | NO | | NULL | |

| expires_at | datetime | YES | | NULL | |

| revoked_at | datetime | NO | MUL | NULL | |

| audit_id | varchar(32) | YES | | NULL | |

| audit_chain_id | varchar(32) | YES | | NULL | |

+-----------------+-------------+------+-----+---------+-------+

If we request an action of deleting specific user and project, the following revocation event will
be generated in the database. These events can be further used to check tokens against them
and make sure that tokens are valid. It consists of necessary data required for checking tokens’
validity.

+-------------+------------+---------------------+---------------------+

| user_id | project_Id | issued_before | revoked_at |

+-------------+------------+---------------------+---------------------+

| 519c2 ... 6 | NULL | 2015-08-27 14:42:38 | 2015-08-27 14:42:38 |

CERN openlab Summer Student Report 2015

21 | P a g e

| NULL | 70d1 ... c | 2015-08-27 14:55:48 | 2015-08-27 14:55:48 |

+-------------+------------+---------------------+---------------------+

4.2 Testing

Openstack source code exists by default in /etc/stack/keystone. In order to perform unit tests,
we may use the Tox tool. Tox creates a virtual environment for every run according to the
configuration file. The configuration file for this testing tool is in tox.ini. Variable 'envlist' informs
us about accessible enviroments. The simplest way to run all the test is:

> tox -e py27

However, the command runs all tests which may take 20 minutes. In order to run a single test,
we need to use regular expressions or activate the virtual enviroment ourselves and run testr
tool instead.

> tox -epy27 -- test_name_regex

or

> tox -epy27
keystone.tests.unit.test_auth.AuthBadRequests.test_authenticate_blank_auth

We can specify the full path of a test as shown above.

Using testr however, we can run only failing tests which is very useful during development
process.

> source .tox/py27/bin/activate

> testr failing

> testr run --failing

4.3 Debugging

4.3.1 Keystone tests

Usually, debugging in Python boils down to adding:

> import pdb; pdb.set_trace()

This approach will not work in Keystone unit tests while running the aforementioned command.
Instead, it is required to use Oslo Test's debug helper by running tox command with debug flag,
for example:

CERN openlab Summer Student Report 2015

22 | P a g e

> tox -e debug
keystone.tests.unit.test_auth.AuthBadRequests.test_authenticate_blank_auth

4.3.2 Live deployments

Debugging live deployments is impossible because of the fact that Keystone is running on
Apache and we will run into an error while trying to use pdb. Instead of this, there is a Remote
Python Debugger (rpdb) which can be easily installed with:

> pip install rpdb

and adding the following line in a source file:

> import rpdb; rpdb.set_trace()

By looking at a log file that pdb is running on localhost, on port 4444.

> tail -f /var/log/apache2/keystone.log

We can now attempt to connect to the service with netcat and use debugger in the same way as
with pdb

> nc 127.0.0.1 4444

5 Conclusions

The report consists of information on necessary steps that need to be taken to start
development with Openstack. It presents how to deploy a testing environment, explains
Keystone architecture and describes testing techniques. It is crucial to understand the
aforementioned steps in order to start contributing to Keystone Identity Service.

After configuring the environment, the following issues that appeared in Keystone has been
solved. In the Federation extension, the actions associated with Identity Providers, such as
deletion or update did not cause token invalidation. The problem has been fixed for both
persistent and non-persistent tokens.

