Dataset Open Access
Marius Miron
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/143b437e-4a0f-4244-9828-9495f113c8dc/Bach10%20Separation%20SMC2017.tar.gz" }, "checksum": "md5:26a2c113f8a31195ed56ba280522192c", "bucket": "143b437e-4a0f-4244-9828-9495f113c8dc", "key": "Bach10 Separation SMC2017.tar.gz", "type": "gz", "size": 1112728959 } ], "owners": [ 28817 ], "doi": "10.5281/zenodo.344499", "stats": { "version_unique_downloads": 34.0, "unique_views": 209.0, "views": 231.0, "version_views": 230.0, "unique_downloads": 34.0, "version_unique_views": 208.0, "volume": 43396429401.0, "version_downloads": 39.0, "downloads": 39.0, "version_volume": 43396429401.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.344499", "conceptdoi": "https://doi.org/10.5281/zenodo.780135", "bucket": "https://zenodo.org/api/files/143b437e-4a0f-4244-9828-9495f113c8dc", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.780135.svg", "html": "https://zenodo.org/record/344499", "latest_html": "https://zenodo.org/record/344499", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.344499.svg", "latest": "https://zenodo.org/api/records/344499" }, "conceptdoi": "10.5281/zenodo.780135", "created": "2017-02-28T18:04:48.387781+00:00", "updated": "2020-01-24T19:24:09.460475+00:00", "conceptrecid": "780135", "revision": 9, "id": 344499, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.344499", "description": "<p>The Bach10 Separation SMC2017 dataset is derived from the Bach10 dataset, which contains ten pieces of Bach chorales along the scores.<br>\nWe separate the audio files in the original dataset and in the dataset we synthesized with Sibelius (https://zenodo.org/record/321361#.WLW40t-i7J8), using the approaches presented in this paper:<br>\nMarius Miron, Jordi Janer, Emilia Gomez, \"Generating data to train convolutional neural networks for low latency classical music source separation\", Sound and Music Computing Conference 2017</p>\n\n<p>The dataset contains the separated audio files along the computed measures which give the quality of separation: SDR, SIR, SAR, computed with BSS Eval 3.0.\u00a0</p>\n\n<p>For the intellectual rights and the distribution policy of the original dataset check the Bach10 dataset page:<br>\nhttp://music.cs.northwestern.edu/data/Bach10.html</p>\n\n<p>The files in Bach10 Separation SMC2017 dataset are offered free of charge for non-commercial use only. You can not redistribute them nor modify them.\u00a0</p>\n\n<p>This dataset is created by Marius Miron, Music Technology Group - Universitat Pompeu Fabra (Barcelona). This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License.</p>", "license": { "id": "CC-BY-NC-4.0" }, "title": "Bach10 Separation SMC2017", "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "780135" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "344499" } } ] }, "keywords": [ "source separation", "classical music", "neural networks" ], "publication_date": "2017-02-28", "creators": [ { "affiliation": "Universitat Pompeu Fabra, Barcelona", "name": "Marius Miron" } ], "access_right": "open", "resource_type": { "type": "dataset", "title": "Dataset" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.780135", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 230 | 231 |
Downloads | 39 | 39 |
Data volume | 43.4 GB | 43.4 GB |
Unique views | 208 | 209 |
Unique downloads | 34 | 34 |