Dataset Open Access

Bach10 Separation SMC2017

Marius Miron


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/143b437e-4a0f-4244-9828-9495f113c8dc/Bach10%20Separation%20SMC2017.tar.gz"
      }, 
      "checksum": "md5:26a2c113f8a31195ed56ba280522192c", 
      "bucket": "143b437e-4a0f-4244-9828-9495f113c8dc", 
      "key": "Bach10 Separation SMC2017.tar.gz", 
      "type": "gz", 
      "size": 1112728959
    }
  ], 
  "owners": [
    28817
  ], 
  "doi": "10.5281/zenodo.344499", 
  "stats": {
    "version_unique_downloads": 18.0, 
    "unique_views": 99.0, 
    "views": 109.0, 
    "downloads": 20.0, 
    "unique_downloads": 18.0, 
    "version_unique_views": 98.0, 
    "volume": 22254579180.0, 
    "version_downloads": 20.0, 
    "version_views": 108.0, 
    "version_volume": 22254579180.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.344499", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.780135", 
    "bucket": "https://zenodo.org/api/files/143b437e-4a0f-4244-9828-9495f113c8dc", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.780135.svg", 
    "html": "https://zenodo.org/record/344499", 
    "latest_html": "https://zenodo.org/record/344499", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.344499.svg", 
    "latest": "https://zenodo.org/api/records/344499"
  }, 
  "conceptdoi": "10.5281/zenodo.780135", 
  "created": "2017-02-28T18:04:48.387781+00:00", 
  "updated": "2019-11-01T07:13:48.727159+00:00", 
  "conceptrecid": "780135", 
  "revision": 8, 
  "id": 344499, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.344499", 
    "description": "<p>The Bach10 Separation SMC2017 dataset is derived from the Bach10 dataset, which contains ten pieces of Bach chorales along the scores.<br>\nWe separate the audio files in the original dataset and in the dataset we synthesized with Sibelius (https://zenodo.org/record/321361#.WLW40t-i7J8), using the approaches presented in this paper:<br>\nMarius Miron, Jordi Janer, Emilia Gomez, \"Generating data to train convolutional neural networks for low latency classical music source separation\", Sound and Music Computing Conference 2017</p>\n\n<p>The dataset contains the separated audio files along the computed measures which give the quality of separation: SDR, SIR, SAR, computed with BSS Eval 3.0.\u00a0</p>\n\n<p>For the intellectual rights and the distribution policy of the original dataset check the Bach10 dataset page:<br>\nhttp://music.cs.northwestern.edu/data/Bach10.html</p>\n\n<p>The files in Bach10 Separation SMC2017 dataset are offered free of charge for non-commercial use only. You can not redistribute them nor modify them.\u00a0</p>\n\n<p>This dataset is created by Marius Miron, Music Technology Group - Universitat Pompeu Fabra (Barcelona). This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License.</p>", 
    "license": {
      "id": "CC-BY-NC-4.0"
    }, 
    "title": "Bach10 Separation SMC2017", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "780135"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "344499"
          }
        }
      ]
    }, 
    "keywords": [
      "source separation", 
      "classical music", 
      "neural networks"
    ], 
    "publication_date": "2017-02-28", 
    "creators": [
      {
        "affiliation": "Universitat Pompeu Fabra, Barcelona", 
        "name": "Marius Miron"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.780135", 
        "relation": "isVersionOf"
      }
    ]
  }
}
108
20
views
downloads
All versions This version
Views 108109
Downloads 2020
Data volume 22.3 GB22.3 GB
Unique views 9899
Unique downloads 1818

Share

Cite as