Dataset Open Access

Bach10 Separation SMC2017

Marius Miron


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.344499</identifier>
  <creators>
    <creator>
      <creatorName>Marius Miron</creatorName>
      <affiliation>Universitat Pompeu Fabra, Barcelona</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Bach10 Separation SMC2017</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2017</publicationYear>
  <subjects>
    <subject>source separation</subject>
    <subject>classical music</subject>
    <subject>neural networks</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2017-02-28</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/344499</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.780135</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by-nc/4.0/legalcode">Creative Commons Attribution Non Commercial 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The Bach10 Separation SMC2017 dataset is derived from the Bach10 dataset, which contains ten pieces of Bach chorales along the scores.&lt;br&gt;
We separate the audio files in the original dataset and in the dataset we synthesized with Sibelius (https://zenodo.org/record/321361#.WLW40t-i7J8), using the approaches presented in this paper:&lt;br&gt;
Marius Miron, Jordi Janer, Emilia Gomez, "Generating data to train convolutional neural networks for low latency classical music source separation", Sound and Music Computing Conference 2017&lt;/p&gt;

&lt;p&gt;The dataset contains the separated audio files along the computed measures which give the quality of separation: SDR, SIR, SAR, computed with BSS Eval 3.0. &lt;/p&gt;

&lt;p&gt;For the intellectual rights and the distribution policy of the original dataset check the Bach10 dataset page:&lt;br&gt;
http://music.cs.northwestern.edu/data/Bach10.html&lt;/p&gt;

&lt;p&gt;The files in Bach10 Separation SMC2017 dataset are offered free of charge for non-commercial use only. You can not redistribute them nor modify them. &lt;/p&gt;

&lt;p&gt;This dataset is created by Marius Miron, Music Technology Group - Universitat Pompeu Fabra (Barcelona). This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License.&lt;/p&gt;</description>
  </descriptions>
</resource>
108
20
views
downloads
All versions This version
Views 108109
Downloads 2020
Data volume 22.3 GB22.3 GB
Unique views 9899
Unique downloads 1818

Share

Cite as