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Abstract: 

This paper supplied an alternative method for exponential growth modeling as a technique for 

regression analysis through SAS algorithm. This alternative method is a combination technique (using bootstrap 

and fuzzy regression for nonlinear model) for the small data set and gives the researcher an option to launch the 

analysis even there is not enough data set. This method current method improves the previous methodology with 

embedded bootstrapping and fuzzy technique to the step of nonlinear regression model. The aim of this 

principle is to propose an alternative method of doing analysis with better improved results. In our case, we 

applied this principle to the agriculture data and the gained results were compared by looking at the average 

width of predicted interval. 
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Introduction to Algorithm Using SAS Language: 

This paper provides a road map of the practical approach of exponential growth modeling using 

aquaculture dataset. Multiple linear regressions are very famous technique and are extensively used in many 

fields especially in agricultural research. The parametric bootstrap method is recommended for the small sample 

size for a reliable performance (Jung et.al, 2005; Cassel, 2010). Bootstrap method is a statistical technique that 

falls under the broad heading of resampling. This method is very useful and can be used various especially in 

the estimation of nearly any statistics (Cassel, 2010). This procedure involves a relatively simple procedure, but 

repeated so many times depending on the need of the researcher. Bootstrap technique is heavily dependent upon 

computer calculation. Using the bootstrap method we are able to determine the estimating value of a parameter 

that presenting the whole of a population. Without using bootstrap method, the value of the parameter of a 

population is impossible to measure directly. So, we use statistical sampling method and we sample a 

population, measure a statistic of this sample, and then use these statistics to say something about the 

corresponding parameter of the population (Cassel, 2010). For the case of nonlinear regression, we have to 

transform the equation from non-linear to a linear form. Multiple linear regressions 

kk xxxY   22110
 are an extension of simple linear regression.  We used this technical to get a better 

result. The random error term is added to make the model probabilistic rather than deterministic. The value of 

the coefficient 
i  determines the contribution of the independent variables ix , and  

0  
is the y-intercept (Diem 

Ngo & La Puente, 2012).  A fuzzy regression model corresponding to 
kk xZxZxZZY  22110
 

previously, explanation variables  sxi '  
are assumed to be precise. However, according to the equation above, 

response variable Y is not crisp but is instead fuzzy in nature. That means the parameters are also fuzzy in 

nature. Our objective is to estimate these parameters. In further discussion, sZi ' are assumes symmetric fuzzy 

numbers which can be presented by interval. For example, 
iZ  can be express as fuzzy set given by 

 wci aaZ 11 ,  where ica  is centre and iwa is radius or vagueness associated. Fuzzy set above reflects the 

confidence in the regression coefficients around ica  in terms of symmetric triangular memberships function. 

Application of this method should be given more attention when the underlying phenomenon is fuzzy which 
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means that the response variable is fuzzy. So, the relationship is also considered to be fuzzy. This 

 wci aaZ 11 ,  can be written as  RL aaZ 111 , with wcL aaa 111   and wcR aaa 111  . In fuzzy 

regression methodology, parameters are estimated by minimizing total vagueness in the model. 

kjkjjj xZxZxZZy  22110
.Using  wci aaZ 11 ,  we can write  wcj aay 00 ,  

 jwc xaa 111 ,  jwjcnjnwnc aaxaa ,, . Thus this can be written as    jccjc xaay 110  

njncxa then it can be written straightly as
njnwjwwjw xaxaay  110

 .
    

As 
jwy

 
represent radius and 

so cannot be negative, therefore on the right-hand side of equation
njnwjwwjw xaxaay  110

, absolute 

values of 
ijx are taken. Suppose there m data point, each comprising   rowna 1  

vector. Then parameters iZ
 

are estimated by minimizing the quantity, which+h is total vagueness of the model-data set combination, subject 

to the constraint that each data point must fall within estimated value of response variable. This can be 

visualized as the following linear programming problem, minimized  



m

j

njnwjww xaxaa
1

110  and Subject to  

j

n

i

ijiww

n

i

ijicc Yxaaxaa 

























 

 1

0

1

0
and 

j

n

i

ijiww

n

i

ijicc Yxaaxaa 

























 

 1

0

1

0
and 0iwa . Simple procedure 

is commonly used to solve the linear programming problem. (Kacprzyk and Fedrizzi, 1992). Data of this study 

is a sample which composed of two variables. Namely variables are as in Table 1. 

Table1:  Description of Data 

Num. Code Explanation of user variables 

1. Y Bacteria Growth Reading 

2. X Dose 

Table 2: Original Data                                     Table3: Taking LN for Data 

Dose(X) Bacteria Growth Reading (Y)  Dose(X) LN (Bacteria Growth Reading)(Y) 

2.000 

3.000 

4.000 

5.000 

8.000 

9.000 

12.00 

13.00 

15.00 

1520.000 

19110.00 

16010.00 

13610.00 

5410.000 

5010.000 

2610.000 

1510.000 

910.0000 

 2.000 

3.000 

4.000 

5.000 

8.000 

9.000 

12.00 

13.00 

15.00 

7.33 

9.86 

9.68 

9.52 

8.60 

8.52 

7.87 

7.32 

6.81 

Exponential growth and decay regression was used in the analysis of relationship between variables. The 

algorithm is given as follows: 

Data Collection 

End Process

Interpret The Output 

Performing Linear 

Regression after 

Transforming the 

Equation into  a Linear 

Form

Fitting Exponential 

Growth Regression 

Modeling 

End Process

Alternative Method for

Exponential Growth 

Regression modeling 

Procedure

Interpret The Output 

Writing Full Stage of 

Algorithm by Adding 

Fuzzy Method to the  

Exponential Growth  

Regression Modeling  

Adding

 Bootstrapping 

Algorithm to the  

Method

 
Figure 1: Flow Chart of an Alternative Exponential Modeling 
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Figure 1 showed the flow chart of an alternative method for exponential modeling procedure. 

Step One: By transforming the bXAeY  into a linear form we obtained the following equation. 
bXAeY  taking ln to the below, we obtained bxAeAAeY bXbX  )ln()ln()ln()ln(ln . Transforming 

data Y into lnY and let the X data in the original condition. 

Step Two: /*Adding Bootstrapping Algorithm to the Method */ 

title "Performing bootstrap with case resampling"; 

proc surveyselect data=bacteria out=boot1 method=urs samprate=1 outhits rep=2; 

run; 

Step Three: /*Running the Original Data using Bootstrap Method*/ 

data bacteria; 

input x y; 

datalines; 

2.00 7.33 

3.00 9.86 

4.00 9.68 

5.00 9.52 

8.00 8.60 

9.00 8.52 

12.00 7.87 

15.00 6.81 

; 

run; 

title "Performing bootstrap with case resampling"; 

proc surveyselect data=bacteria out=boot1 method=urs samprate=1 outhits rep=2; 

run; 

proc print data= boot1; 

run; 

Table 4: Results: Data enlargement after performing bootstrapping method 

Dose LN (Bacteria Growth Reading) (Y) 

2 7.33 

2 7.33 

3 9.86 

4 9.68 

4 9.68 

13 7.32 

13 7.32 

15 6.81 

2 7.33 

2 7.33 

4 9.68 

4 9.68 

9 8.52 

9 8.52 

9 8.52 

13 7.32 

Step Four: /*Running the Bootstrap Data Using Regression Method*/ 

ods rtf file='robdunc0.rtf' style=journal; 

Title “Simple Linear Regression Using Proc Reg”; 

Proc Reg Data=boot1 ; 

Model y = x; 

Run; 

ods rtf close; 

Results: Results after performing bootstrapping method  

Table 5: Parameter Estimates 

Variable DF 
Parameter 

Estimate 

Standard 

Error 
t Value Pr > |t| 

Intercept 1 8.90477 0.47669 18.68 <.0001 

x 1 -0.09487 0.05846 -1.62 0.1269 
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               LN (Bacteria Reading) = 8.90477 - 0.09487                                        (i) 

               Standard Errors              (0.47669)    (0.05846) 

Now we calculated width of predicted least square method,  

Referring to the (i) we can calculated width as follows: 

Width =        XX ee 0584.009487.00584.009487.0 4767.0030.73674767.0030.7367    

            =  XX ee 1533.003641.0 55331.736650669.7367    

Step Five: /*Performing Fuzzy Least Squares (FLS) to Exponential Growth and Decay Regression after 

Transforming the Equation into a Linear Form and Bootstrapping Method */ 

data bacteria; 

input x y; 

datalines; 

2 7.33 

2 7.33 

3 9.86 

4 9.68 

4 9.68 

13 7.32 

13 7.32 

15 6.81 

2 7.33 

2 7.33 

4 9.68 

4 9.68 

9 8.52 

9 8.52 

9 8.52 

13 7.32 

; 

ods rtf file='robdunc0.rtf' style=journal; 

/* Method of fuzzy least squares (FLS)to the above data */  

proc nlp;  

min Y; 

decvar ar br ac bc; 

bounds ar>=0, br>=0, ac= 8.90477, bc= -0.09487;  

lincon ac+2*bc-ar-2*br<=7.33;  

lincon ac+2*bc-ar-2*br<=7.33;  

lincon ac+3*bc-ar-3*br<=9.86;  

lincon ac+4*bc-ar-4*br<=9.68;  

lincon ac+4*bc-ar-4*br<=9.68;  

lincon ac+13*bc-ar-13*br<=7.32;  

lincon ac+13*bc-ar-13*br<=7.32;  

lincon ac+15*bc-ar-15*br<=6.81;  

lincon ac+2*bc-ar-2*br<=7.33;  

lincon ac+2*bc-ar-2*br<=7.33;  

lincon ac+4*bc-ar-4*br<=9.68;  

lincon ac+4*bc-ar-4*br<=9.68;  

lincon ac+9*bc-ar-9*br<=8.52;  

lincon ac+9*bc-ar-9*br<=8.52;  

lincon ac+9*bc-ar-9*br<=8.52;  

lincon ac+13*bc-ar-13*br<=7.32;  

lincon ac+2*bc+ar+2*br>=7.33;  

lincon ac+2*bc+ar+2*br>=7.33;  

lincon ac+3*bc+ar+3*br>=9.86;  

lincon ac+4*bc+ar+4*br>=9.68;  

lincon ac+4*bc+ar+4*br>=9.68;  

lincon ac+13*bc+ar+13*br>=7.32;  

lincon ac+13*bc+ar+13*br>=7.32;  

lincon ac+15*bc+ar+15*br>=6.81;  

lincon ac+2*bc+ar+2*br>=7.33;  
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lincon ac+2*bc+ar+2*br>=7.33;  

lincon ac+4*bc+ar+4*br>=9.68;  

lincon ac+4*bc+ar+4*br>=9.68;  

lincon ac+9*bc+ar+9*br>=8.52;  

lincon ac+9*bc+ar+9*br>=8.52;  

lincon ac+9*bc+ar+9*br>=8.52;  

lincon ac+13*bc+ar+13*br>=7.32;  

Y=16*ar+108*br; 

run; 

ods rtf close; 

Table 6: Fitting Exponential Growth and Decay Regression value using Fuzzy Least Square 

Optimization Results 

Parameter Estimates 

N Parameter Estimate 
Gradient Objective 

Function 

Active Bound 

Constraint 

1 ar 1.385030 16.000000  

2 br 1.97325E-17 108.000000 Lower BC 

3 ac 8.904770 0 Equal BC 

4 bc -0.094870 0 Equal BC 

Substituting the values of parameter estimates in model (Table 6) we obtained 

                    LN (Bacteria Reading) = 8.90477 - 0.09487                       (ii) 

                    Standard Errors              (1.385)         (0.000) 

Referring to the (ii) now we calculated width of predicted fuzzy least square method,  

Width =        XX ee 00.009487.000.009487.0 385030.1030.7367385030.1030.7367    

            =  XX ee 09487.009487..0 64497.736541503.7368    

Table 7: Width of Predicted Interval by Least Square and Fuzzy Least Square 

Dose 
LN (Bacteria Growth 

Reading) (Y) 

Width of Predicted Interval 

Least Square in (LN) Fuzzy Least Square (LN) 

2 7.33 7.26 0.83 

2 7.33 7.26 0.83 

3 9.86 7.58 0.73 

4 9.68 7.77 0.64 

4 9.68 7.77 0.64 

13 7.32 8.18 -0.21 

13 7.32 8.18 -0.21 

15 6.81 8.17 -0.40 

2 7.33 7.26 0.83 

2 7.33 7.26 0.83 

4 9.68 7.77 0.64 

4 9.68 7.77 0.64 

9 8.52 8.15 0.17 

9 8.52 8.15 0.17 

9 8.52 8.15 0.17 

13 7.32 8.18 -0.21 

Average Width 7.81 0.38 

Conclusion: 

We computed the predicted interval using method least square and method of fuzzy least square. Fuzzy 

least square show the average much shorter compared to the method of least square. This indicated that fuzzy 

least square is more efficient than method least square. 

Summary and Discussion: 

This paper gives the explanation for an alternative programming method of bootstrap approach to 

nonlinear regression procedure using SAS software. The aim for the algorithm building is to provide the 

researcher with the alternative programming of a data analysis. This method can be applied for the small sample 

size data especially where the data is very difficult to collect. In our case, smaller width of predicted interval c 

will tell us how accurate our estimate parameter is likely to be. 
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