
Sa
m

pl
es

Pr
op

er
tie

s
As

tr
oO

bj
ec

ts Container Classes

Name:
	 Virgo Galaxies
Contents:
	 M98
	 NGC4216
	 M99
	 NGC4262
	 M61
	 M100

A Format Independent Data Interface for Astronomy
“...because I don’t care what format the spectra is in!!!”

Why “Format Independent”?

While the computer literate among us discuss
and debate endlessly the advantages and disadvan-
tages of various data formats, most astronomers just
want to get on with doing science. They only care
about the format of data if they can’t open and inter-
act with their own and communal data seamlessly in
their analysis tool of choice.

A uniform Data Program Interface (or Data API)
for astronomy simplifies not only the options for the
astronomer to interact with data from various sourc-
es and in various formats, but also offer the possibil-
ity for developers to support multiple formats and
sources with no additional development cost.

Interactive Data Exploration

FIDIA is being developed with a focus on easy, interactive
data exploration. Rather than spending time trolling through a
schema browser or figuring out how to bring together multiple
data sources, time should be spent analysing and exploring the
data. Introspection in e.g. iPython allows for self discovery of the
data model.

An Example session:
>>> mysample = \
	 Sample.new_sample_from_archive(‘dynamo’)
>>> mysample
[‘HfluxLz_15-3’, ‘MfluxLz_21-1’]
>>> mysample[‘HfluxLz_15-3’]
Galaxy “HfluxLz_15-3” at 15h34m13.4s -04d34m03.3s
>>> mysample[‘HfluxLz_15-3’].redshift
0.05432
>>> mysample.add_archive_for_existing(‘SDSS’)
>>> mysample[‘HfluxLz_15-3’].image[‘SDSS-r’]
<<image>>
>>> mysample[‘HfluxLz_15-3’].redshift
WARNING: Multiple redshifts availabe, displaying
from primary Archive “DYNAMO”;
0.05432
>>> mysample[‘HfluxLz_15-3’].redshift.all
[‘dynamo’: 0.05432, ‘sdss’: 0.054291]

Context

More and more, astronomy is becoming a data
driven rather than observation driven science. As-
tronomers now care as much about bringing to-
gether diverse existing data sets and applying new
analysis as about collecting new data and applying
existing analysis methods. Both of these depend on
interacting with data in a variety of formats and
places (FITS, HDF, cloud based, database, files, etc.)

The IVOA has already developed a comprehen-
sive set of standards covering data storage (VOTa-
bles), data communication (TAP, SAMP), and data
typing (Universal Content Descriptors) to help make
interaction with data as seamless as possible. FID-
IA can take advantage of that infrastructure where
available, but can work around its absence when
necessary to provide a consistent experience for the
astronomer for all data sets.

Offline Processing and Analysis

When used as a basis for implementing algorithms for scien-
tific analysis, FIDIA makes analysis code highly portable to other
data sets. New analysis methods written on top of FIDIA should
be more attractive for other astronomers.

The standardised data model of FIDIA is extensible through a
community driven process similar to astropy, making it easy to
add new functionality.

FIDIA is designed to be reasonably efficient in offline process-
ing. Objects of the data model are created only as needed. Remote
or other data that is costly to access is cached locally during.

Goals

FIDIA seeks to free the astronomer to think
about stars and galaxies and their spectra, magni-
tudes, velocities and other properties by combining a
standardised, high-level data model with community
developed interfaces to many common data sources.

Analysis code written using FIDIA will be highly
portable, making it easier to apply existing analysis
methods to new data, or bring existing data into new
analysis.

Following the success of astropy, FIDIA invites
community contributions to reduce the need for as-
tronomers to re-invent data import code or develop
new data models. Plug-ins for data access can read
both local and remote data, eliminating the need to
download large remote data sets, and allowing code
to be uploaded for “bring code to the data” style ex-
ecution.

What is FIDIA?

FIDIA is a Python package for interacting with
data for astronomical objects in a consistent and in-
tuitive manner, regardless of the source or format of
the data. It also provides a standardised, high level
data model, organising data by astronomical object
and physical meaning.

The package accepts that data will always be
available in a wide variety of formats and places, and
therefore it provides a formulaic way to connect to
and import from new data sources such as on the
user’s computer. The package takes care of mundane
details such as memory management, local caching,
unit tracking, etc.

The reference package is written in Python, but
implementations in other languages are possible.

Data Interface Layer for Developers

FIDIA development is an integral part of the AAO Node of the
ASVO. The node will use FIDIA as the data interface layer between
front-end UIs and the back-end data stores. By using FIDIA as the
high level data model and interface layer, the Node expects to ul-
timately be able to query remote data sets seamlessly with local
ones and provide options for bringing code to the data in a cloud
processing environment.

Many other applications could benefit from a standardised
data interface library, eliminating the need to (re-)develop code
for opening and interpreting the plethora of data formats com-
mon in astronomy.

A standardised method of displaying a particular kind of data
(such as a velocity map) could be implemented on top of FIDIA,
making it easy to visualise data while exploring it.

Comments Please!
Please feel free to use the sticky notes to add thoughts and comments

Ar
ch

iv
es

FIDIA

SDSS Cloud Data
All-Sky Virtual
Observatory Team Database Local Data File

Archives handle accessing the data through an
associated plug-in as needed, and may cache data
locally for remote data sources.

Plug-ins themselves are programmatic de-
scriptions of how to retrieve a given piece of data
(something that might have to be written anyway
if not already present). Plug-ins can execute arbi-
trary Python code to access the necessary data.

Data to be accessed can be in an arbitrary for-
mat, remote or local. It might be accessed through
a web-page or VO protocol.

The Sample is the basic access point for FIDIA.
Samples define collections of AstroObjects and

add and maintain connections to archives of data.
It is through the sample that objects and their
properties (“the data”) are accessed.

AstroObjects such as Stars, Galaxies, or Qua-
sars define the standardised vocabulary of proper-
ties (high level data model) that an astronomer
might expect to find for each, reducing the need
to troll through a schema browser.

In some cases, AstroObjects may be able to in-
fer properties not explicitly present.

Properties are the quantities associated with
AstroObjects. These are smart objects that in-
clude

»» units
»» errors
»» upper or lower limits as necessary
»» description of what they are
»» comments
»» dimensionality

SDSS Plug- Custom Plug-inASVO Plug-in Custom Plug-in

Name:
	 Pleiades Stars
Contents:
	 25 Tauri
	 27 Tauri
	 17 Tauri
	 20 Tauri
	 19 Tauri
	 28 Tauri

Quasar

Star Cluster

Galaxy Group

Galaxy
Galaxy

Galaxy
Galaxy

Star
Star

Star

Single Valued Properties

SimpleProperty

Magnitude Redshift Flux

2-D Properties

Map

IntensityMapVelocityMap

1-D Properties

Spectrum TimeSeries

Property

MySQL CSV

Ex
te

rn
al

 D
at

a

Plug-in Architecture
Simple community contributed or custom plug-ins

connect arbitrary data to the data model:
@redshift
def z_helio(self):
	 data = np.genfromtext(“my_data.dat”)
	 # Redshift in the third column	
	 return data[2]

@magnitude.r_band
def sdss_r_mag(self):
	 res = sdss_sql(“SELECT mag_r “
		 + “FROM PhotoObj “
		 + “WHERE PhotoObjID = “ + self.id)
	 return res[0]

Object Oriented Data Model
The data model is object oriented,

with classes of objects inheriting from
more general classes. Inheritance re-
duces repetition of code, making new
functionality easy to deploy across the
data model.

Built in cross matching
Any time data from multiple archives are brought

together, they must be cross matched. Therefore, tools
for doing cross matching are critical to this data inter-
face. The following strategies are proposed:

»» Attaching a new archive to the sample includes
the cross matching

»» There are default/standard schemes available,
such as match on ID or position with tolerance

»» Cross matching can be done in a user defined
way by providing a custom cross-matcher.

Poster by:
Andy Green

andrew.green@aao.gov.au
Australian Astronomical Observatory

