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Framework of lesson 10:

• Response Surface Methodology

• Research of the ascending direction (Steepest 
ascent method)

• Local explorative phase

• Examples

• Some complete studies



RESPONSE SURFACE

• Until now we have often spoken generically about "factors". It has 
been seen that these can be "category" or "continuous type“

• Among the first we can mention the battery brand, the instrument 
on which it is used, the medicine tested on patients, ... We have 
seen how the ANOVA results can be deepened with the concepts of 
orthogonality.

• Among the factors "continuous type" you can have the selling price, 
the space dedicated on the shelf, the welding temperature, ... In the 
case of continuous factors the ANOVA results can be completed 
with a linearity analysis, evaluating if there are significant non-
linearity components. 

• For continuous factors, usually called "variables", there is a further 
type of analysis, that of the study of the surface of response.



RESPONSE SURFACE

• It is usual to divide the experimentation into three phases:
1. Screening phase: this is a preliminary analysis (usually

performed with complete or fractional factorial plans,
Taguchi method), which considers all the factors evaluated
at a few levels (often 2), oriented to understand which
factors are significant and which ones can be discarded.

2. Project phase of the actual experiment: it is a subsequent
phase, in which the effects of the previously revealed
factors are investigated, with analysis of the variance on
the few factors at many levels (orthogonal
decompositions, linearity evaluations).



RESPONSE SURFACE

3. Study phase of the response surface: for continuous variables it is
aimed at determining the mathematical function that links the
response to the independent variables, secondly it seeks the
search for the optimal combination of variables, which maximizes
the response itself.

1st Phase (Screening) Complete factorial plans (2k) or fractional plans (2k-p), 
Taguchi method

2nd Phase (Effects) ANOVA with 1 or 2 factors or more Latin and Greek-Latin 
quadrature factors, variance decomposition, linearity 
verification

3rd Phase Search for the response surface and its function: 
optimization of treatments to maximize the result



RESPONSE SURFACE: EXAMPLE

• Consider the following question. We want to optimize the
thickness of a casting by acting on the values of two factors,
namely continuous variables (called X1 and X2). The factors
are the mixture ratio of the two components of the epoxy
resin and the position of the pour point in the mold.

• The independent variable is represented by the thickness
to be optimized.

Variabili indipendenti Variabile dipendente

Variable X1: resin Answer Y: Thickness of the 
piece made by castingVariable X2: position of the 

mold in the cast



RESPONSE SURFACE: 
INTERPOLATION

• The aim is to identify the relationship that links X1 and X2
(independent variables) to the dependent variable Y. This
relationship will later allow us to identify the combination
of X1 and X2 that maximizes the response. In the event that
it is minimized (for example, reduction of product defects,
pollutant emissions, ...), just consider the maximization of (-
Y).

• The relation is of the type:
• Y=f(X1,X2) + ε
• f(X1,X2) represents an interpolating polynomial relationship,

while ε is an error term (deviation between real value and
value obtained by interpolation).



RESPONSE SURFACE: 
INTERPOLATION

• The interpolating function can be of the first or second 
order.

• Approximation according to a plan (first order):
• f(X1, X2) = β0 + β1X1 + β2X2

• Approximation according to a bilinear form of the second 
order:

• f(X1, X2) = β0 + β1X1 + β2X2 + β11X1
2 + β22X2

2 + β12X1X2

• The term β12X1X2 is closely linked to the interaction 
phenomena between the two variables.

• Initially, in the attempt to map the dependent variable with 
respect to the inputs, the linear approximation can be used, 
later, near the maximum, the quadratic terms must also be 
considered.



RESPONSE SURFACE: 
INTERPOLATION

• The planar approximation is usually acceptable in an area of the response 
function sufficiently far from the point of maximum and of limited 
extension.

• The actual adequacy of the planar model can however be verified with 
appropriate tests.

• By mapping the surface, you can locate the maximum and therefore the 
optimal combination.

Small parts of 
the surface can 
be considered as 
planes

In this zone we have a 
strong curvature which 
cannot be approximated to 
a plane



PHASE ONE: EXPLORATION OF THE 
FIELD

• The question of optimizing the answer is usually answered,
mapping the answer itself according to the inputs. Initially
we rely on a linear model and do a series of experiments on
two levels with two purposes: to understand how far you
are from the maximum and identify the direction to move
to the maximum.

• This method is called "method of the steepest ascent“.
• Assuming a planar type model is equivalent to considering

only linear terms, in the absence of quadratic terms and
terms related to interactions. With only linear terms at
stake, only two levels can be considered for each factor,
using complete or fractional factorial plans.



PHASE TWO: LOCAL EXPLORATION

• Only when, at the end of the experiments of wide-ranging
exploration, we get close to the maximum and the planar
model becomes inadequate, we must use a quadratic
model. A particular ANOVA test is used to ascertain the
inadequacy of the planar approximation.

• This second phase usually involves only one experiment,
but on several levels (therefore with more combinations of
treatments).

• The method adopted in this phase is called "local
exploration".

• Given a problem, for example the one aimed at optimizing
the thickness of a casting, we proceed according to the two
phases.



STEEPEST ASCENT METHOD

• You start by identifying two levels for each variable. These may be 
two typical values for the variables under examination, which, 
depending on the state of the art or previous knowledge, may not 
be too far from the optimal values.

• In correspondence with these values a 2k plane is set.
• This is the first of the series of experiments in the first phase of 

analysis.

Low Level High Level

Variable X1: 
Concentration of resin

1:2
(0.5)

1:1
(1)

Variable X2: pouring 
position in the mold

25 mm from the side of 
the mold

50 mm from the side of 
the mold



STEEPEST ASCENT METHOD

• Returning to the plan 22:

• Here, too, an optimization is carried out according to 
the two phases. It starts from the first experiment of 
the first phase performed under the conditions 
mentioned (in the absence of repetitions).

5.4 6.9

7.0 7.1

0.5 1

X2 (Distance) [mm]

X1 (concentration)

50

25



STEEPEST ASCENT METHOD

Usually we refer to quantities (here indicated with u 
and v) defined on [-1; 1]:

Therefore: 

• X1 = [0,5; 1] → u = [-1; 1]; 

• X2 = [25; 50] → v = [-1; 1]

• u = 4·X1 – 3; v = 2/25 · X2 – 3



STEEPEST ASCENT METHOD

Usually we refer to quantities (here indicated with u and v) defined on [-1; 1]:
Therefore: 
• X1 = [0,5; 1] → u = [-1; 1]; 
• X2 = [25; 50] → v = [-1; 1]
• u = 4·X1 – 3; v = 2/25 · X2 – 3 (note that X1≡A, X2≡B)
• The answer function is of the type:
• Y = δ0 + δ1·u + δ2 ·v + ε , this represents the relationship between the 

inputs and the dependent variable, unless an error ε.

Combinations Results (1) (2) Esteems of…

(-1,-1)→1 7.0 14.1 26.4 26.4/4=6.6 µ (mean)

(1,-1) →a 7.1 12.3 1.6 1.6/2=0.8 A

(-1,1) →b 5.4 0.1 -1.8 -1.8/2=-0.9 B

(-1,-1) →ab 6.9 1.5 1.4 1.4/2=0.7 AB



STEEPEST ASCENT METHOD

• δ0 = Average
• δ1 = A/2
• δ2 = B/2
• Y = δ0 + δ1·u + δ2 ·v + ε = μ + A/2·u + B/2 ·v + ε
• So the estimate of the response plan is:
• f (u, v) = μ + A/2·u + B/2·v = 6,60 + 0,4·u - 0,45·v
• Both u and v vary from -1 to +1, that is, two "drawing 

units" (from -1 to 0 and from 0 to +1).
• The divisions for two take into account the fact that the 

effects represent the increase in the response variable 
due to changes in two drawing units.



STEEPEST ASCENT METHOD

• f (u, v) = μ + A/2·u + B/2·v = 6,60 + 0,4·u - 0,45·v
• The goal is to maximize the response, ie the thickness of 

casting. This is greater, the higher the value of u (higher 
concentration ratio) and the lower the value of v (the pour 
point closest to the edge of the mold).

• One can now ask whether the terms μ, A / 2 and B / 2 are 
acceptable estimates of δ0, δ1, δ2 respectively. To make 
sure of this, an ANOVA test is performed, to evaluate the 
significance or not of the A and B effects, referable to u and 
v. If they were significant, then this would indicate that the 
result is significantly increased with at least one factor 
changing, indicating that we might be close to the point of 
maximum.



STEEPEST ASCENT METHOD

• To evaluate the significance, we consider the usual 
parallelism between the considered 22 plane and a 
monofactorial ANOVA with 22, i.e. 4 levels.

• TSS = (7,0 - 6,6)2 + (7,1- 6,6)2 + (5,4 - 6,6)2 + (6,9- 6,6)2 
= 0,16 + 0,25 + 1,44 + 0,09 = 1,94

• The problem is that in the absence of replicas it is not 
possible to evaluate the error term, so SSW = 0 with 
zero degrees of freedom. It also has that SSBC = TSS.

1 a b ab Grand 
Mean

7.0 7.1 5.4 6.9 6.6



STEEPEST ASCENT METHOD

• Assuming negligible interactions (as in the planar
model), we use the term interaction AB to estimate the
error: we say that this term is not null only due to the
effect of uncertainty.

• The individual decompositions are of the type:
• (effect)2 · n° ripetitions · 2k-2

• SSQU = A2 · 1 · 22-2 = A2 = (0,8)2 = 0,64
• SSQV = B2 · 1 · 22-2 = B2 = (-0,9)2 = 0,81
• SSQErrore = SSW = AB2 · 1 · 22-2 = A2 = (0,7)2 = 0,49
• Effettivamente TSS = SSBC = SSQU + SSQV + SSW =
• = 0,64 + 0,81 + 0,49 = 1,94



STEEPEST ASCENT METHOD

It is therefore obtained that there is no significance,
neither for A (u, δ1), nor for B (v, δ2). This indicates
that the response surface is flat and suggests that it
is still far from the maximum point.

SSQ DoF MSQ Fcalc. p-value

SSBC 1.94 3

A(u,δ1) 0.64 1 0.64 1.3 46%

B(v,δ1) 0.81 1 0.81 1.7 42%

Errore
(SSW)

0.49 1 0.49

Total 1.94 3



STEEPEST ASCENT METHOD

• The next experiment is then formulated, moving in the direction of 
the "steepest climb".

• This is the direction given by the vector of the type [δ1; δ2], in 
practice. In this case: [0.40; -0.45] = [1; -9/8]. The searched 
direction has the equation: v = -9 / 8 · u. To center the new 
experiment below, it will be necessary to move in this direction.

• Therefore: the first experiment is centered in [0; 0], to center the 
second one, it is necessary to move along the line v = -9/8 · u.

• The problem is related to how much to move from the center: if 
you move too little, there is the risk of having to use many steps, to 
get to the point of maximum, if too much, there is a risk of 
overcoming the maximum point.



STEEPEST ASCENT METHOD

• There is no fixed rule: one goes by trial, also 
relying on experience. It would be important to 
know what is the maximum value to be expected.

• Assume that you have defined the following new 
center: u = +1, v = -9/8

Rising and descending of 
one unit in the plot we 
obtain the combinations 
to test in the new 22



STEEPEST ASCENT METHOD

u V X1 X2

0 -1/8 0.75 35.9

0 -17/8 0.75 10.9

2 -1/8 1.25 35.9

2 -17/8 1.25 10.9



STEEPEST ASCENT METHOD

Now a reference system change is being made:
the new 22 plan is centered with respect to an s-t
system.



STEEPEST ASCENT METHOD

• At this point we continue, performing a certain number of
experiments. At the end of each experiment, the effects
ascribable to the two variables are assessed and their
significance is tested. In the absence of significance,
identifies the maximum increase direction and chooses a
new center, to undertake another experiment. If, on the
other hand, there is a significance of at least one factor, we
stop and proceed with a further check: that of the
adequacy of the planar approximation. This verification,
satisfied far from the maximum point, should no longer be
near the peak.

• To carry out this verification, which is however well to be
carried out at the end of each experiment, it is necessary to
add some central points.



STEEPEST ASCENT METHOD

• For convenience we take back the values of the
previous example, adding 2 central points, we found
the following results:

• There are two additional points at the center, which
will be used to estimate the error and verify planarity.



STEEPEST ASCENT METHOD

Characteristics of the central points:
• They have no influence on the estimations of the

coefficient (of slope) δ1 and δ2.
• It allows an estimate of the error, evaluating the

differences in the results of the replicas.
• Allows the execution of the planarity check.
Grand mean = (7,0 + 7,1 + 5,4 + 6,9 + 6,6 + 6,9)/6 =
6,65
TSS = (7,0 – 6,65)2 + (7,1 – 6,65)2 + (5,4 – 6,65)2 +
+ (6,9 – 6,65)2 + (6,6 – 6,65)2 + (6,9 – 6,65)2 = 2,015



STEEPEST ASCENT METHOD

SSQu = 0,64
SSQv = 0,81
SSQerror = SSW = (6,6 – 6,75)2 + (6,9 – 6,75)2 = 0,045
SSQdeviation from planarity= TSS – SSQu – SSQv – SSW = 
=2,015 – 0,64 – 0,81 – 0,045 = 0,52
• The term SSQdeviation from planarity takes into account all those

causes, which can determine non-planar behavior:
essentially non-linearity and interaction effects.

• The figures in the slide show how the surface of response 
loses the planarity characteristics, if there is interaction.



STEEPEST ASCENT METHOD

Response surface 
without interactions

Response surface 
with interactions



STEEPEST ASCENT METHOD

It must therefore be concluded that no significant effects are
observed (at the 15% threshold), both as regards the effects
directly attributable to the two variables and as regards non-
planarity. The planar model is therefore still adequate, it is still
necessary to proceed in the direction of the steepest ascent to
find the maximum.

Effect SSQ DoF MSQ Fcalc. p-value

A(u,δ1) 0.64 1 0.64 1.3 46%

B(v,δ1) 0.81 1 0.81 1.7 42%

Deviation from the 
plan e configuration

0.52 2 0.26 5.78 28.2%

Error (SSW) 0.045 1 0.045

Total 2.015 5



STEEPEST ASCENT METHOD

• If instead it was found, as regards the points in 
the center:

• We repeat the analysis of the variance:



STEEPEST ASCENT METHOD

Grand mean = (7,0 + 7,1 + 5,4 + 6,9 + 10,6 + 10,9)/6 = 7,98
TSS = (7,0 – 7,98)2 + … + (10,9 – 7,98)2 = 24,95
SSQu = 0,64
SSQv = 0,81
SSQerror = SSW = (10,6 – 10,75)2 + (10,9 – 10,75)2 = 0,045
SSQdeviation from planarity = TSS – SSQu – SSQv – SSW = 24,95 – 0,64 – 0,81 –
0,045 = 23,45

Effect SSQ DoF MSQ Fcalc. p-value

A(u,δ1) 0.64 1 0.64 1.3 46%

B(v,δ1) 0.81 1 0.81 1.7 42%

Deviation from the 
planar  configuration

23.45 2 11.73 260.6 4.4%

Error (SSW) 0.045 1 0.045

Total 24.95 5



STEEPEST ASCENT METHOD

• In this case it is observed that the deviation from planarity 
is significant, while the effects of the two variables are 
always below the threshold of significance.

• Indeed, the much greater value of the two central points is 
interpreted as the presence of a peak inside the four lateral 
points.

• Therefore, being sure to be near the maximum point, in 
order to find this more precisely, it is necessary to refine 
the model, adding the quadratic terms and those linked to 
the interaction. The goal is to determine the combination 
of treatments, which maximizes the response and 
maximized response value.

• The local exploration method is then applied.



METHOD OF THE LOCAL 
EXPLORATION

We can apply two kinds of plans:
• Cetral composite plan
• Box Plan- Behnken
The central composite plan provides for the evaluation of 
experimental points inserted according to different criteria.
a) Factorial plan complete or fractional for the estimation of 

the main effects and interaction and related coefficients
b) Points with a star arrangement, for the estimation of the 

quadratic components
c) Central points, for the estimation of the error and the 

evaluation of the curvature of the surface of response.



CENTRAL COMPOSIT PLAN

a) Complete factorial plan or fractional factorial
• The most important requirement is that this plan must be

able to estimate the main effects, in addition to two-factor
interactions. In other words the resolution (minimum
number of letters of the confused effects) must be 5 or
higher. If it is 5, the main effects are in combination with 4-
factor interactions, the interactions between 2 factors are
interactions with 3 factors.

• For example, if you have 4 factors, a fractional plan can
have at most 4 (main effects in conjunction with 3-factor
interactions, 2-factor interactions in combination with each
other, so you can not resort to a 24-1) must keep the plan
complete 24. If the factors are 5, however, you can use a
plan 25-1.



CENTRAL COMPOSIT PLAN

b) Components with a star arrangment

• Points placed axially at ±Ps distances from the center
are added in positive and negative directions. The
coordinates of these points for a generic number of
factors are substantially the following.

Ps=f(k,k-p)
For instance in a complete 24,
Ps=2,
Typical value: 2



CENTRAL COMPOSIT PLAN

c) Central Points
• Finally, there are some central points, which, as seen,

allow the estimation of the error, as well as evaluations
on the curvature of the surface, allowing a more
reliable calculation of the quadratic terms. There is an
optimal number of points depending on k and (k-p),
typically it is between 2 and 4.

• In the case of two factors, a plan like the following
should be used:

• a) Points in the four corners→ 22 plan
• b) Points over the axes→ star points
• c) Points in the center→ central points



CENTRAL COMPOSIT PLAN



PIANO BOX-BEHNKEN

• It is a project strategy that requires that the factors be
evaluated at only 3 levels (unlike the composite central
plan which provides for 5-level evaluations: -Ps, -1, 0,
+1, + Ps).

• It is made up of the combination of all the possible
plans 22 (complete factorial with 2 factors, each with 2
levels), to involve all the factors.

• Then, central points are added, in a similar way to the
composite central plane, to carry out an estimate of
the uncertainty and to evaluate the curvature of the
response surface. Typically, 2 to 4 center points are
added.



PIANO BOX-BEHNKEN

• In the presence of 4 factors, X1, X2, X3, X4, to
evaluate all the possible combinations, 4 floors 22

must be considered. The table shows the
coordinates of the points.



PIANO BOX-BEHNKEN



CENTRAL COMPOSIT VS. BOX-
BEHNKEN

In the case of 4 factors, the composite central plane requires:
• A complete factorial plan 24 for a total of 16 points
• 2·4 = 8 star points along the axes
• 2 to 4 central points
In the case of 4 factors, the Box-Behnken plane requires:
• 6 complete factorial plans 22, for a total of 6 · 4 = 24 points
• 2 to 4 central points
In conclusion both plans require the execution of
experimental tests at 24 points, with the addition of 2 or 4
central points. For 4 factors the number of combinations is the
same in the two cases. The cases are now evaluated by
number of factor k minor or major 4.



CENTRAL COMPOSIT VS. BOX-
BEHNKEN

In the case of 3 factors, the composite central plane requires:
• A complete factorial plan 23 for a total of 8 points
• 2·3 = 6 star points along the axes
• 2 to 4 central points 

In the case of 3 factors, the Box-Behnken plan requires:
• 3 complete factorial plans 22, for a total of 3 · 4 = 12 points
• 2 to 4 central points 
So for k = 3 is the Box-Behnken plan to require less
combinations (12 versus 14, apart from the central points),
this is generally valid for k <4 too.



CENTRAL COMPOSIT VS. BOX-
BEHNKEN

In the case of 5 factors, the composite central plane requires:
• A complete factorial plan 25-1 for a total of 16 points
• 2·5 = 10 star points along the axes
• 2 to 4 central points 

In the case of 5 factors, the Box-Behnken plan requires: 
• 10 complete factorial plans 22, for a total of 10 · 4 = 40 points
• 2 to 4 central points
So for k = 5 is the composite central plane to require less combinations 
(26 versus 40, apart from the central points), this is generally valid for 
k> 4. In general the composite central plane is preferable, unless it is 
very expensive to perform tests on 5 levels.



METHOD OF THE LOCAL 
EXPLORATION

At this point, based on the detected experimental data, a
mathematical model of the second order can be outlined,
which links the dependent variable to the independent k
variables (X1, ..., Xk). This model considers, in addition to
the linear terms, also the quadratic and interaction ones
that are neglected in the first phase of the
experimentation. All terms of the third order or of higher
orders are neglected. The model is presented in the form:

• Y = β0 + β1X1 + β2X2 +…+ βkXk +
• + β11X12 + β22X22 +…+ βkkXk2 +
• + β12X1X2 + β13X1X3 +…+ β1kX1Xk +…+ β23X2X3 + 

β24X2X4+…+ β2kX2Xk +…+ β(k-1)kXk-1Xk
Interaction Terms

Quadratic Terms

Linear Terms



METHOD OF THE LOCAL 
EXPLORATION

This mathematical relation can be used to make
numerical predictions on the output value for
different combinations and above all to define
among them the optimal one, which maximizes the
response itself.

To find the maximum point, calculate the Y gradient
and set it to zero.

The points thus found can be points of maximum, minimum or
saddle points (i.e. maximum for some directions, minimum for
others). It is therefore necessary to calculate the function in a
neighborhood of the points found, to understand if they are
actually points of maximum.



CASE STUDY 1: FRICTION

A leading company in the field of automatic packaging
machines commissioned a study aimed at investigating the
behavior of plastic film friction. We want to evaluate how the
dynamic friction coefficient is influenced by 5 operating
factors. In particular, one wants to know from which factors
depends and with what kind of dependence.

Packet:
dimensions:
80 mm x 60 mm x 20 mm

BOPP
polipropilene film a 
double orientation



FACTORS

• Research factors having a potential impact 
over the process. 

a) Physical and chemical properties of the film 

b) Characteristics of the sliding surface

c) Temperature

d) Sliding speed

e) Pressure at the packet-film interface



CASE STUDY 1: SELECTION OF 
LEVELS

Categorical variables:
• a) 15 films from different vendors
• b) 4 different surfaces 
For continuous variables, to get the 
eventual non-linearity
• c) at least 3 levels of temperature (22°C 

÷ 150°C)

• d) at least 3 levels of sliding speeds 
(150 ÷ 1200 mm/min)

• e) at least 3 levels of interface pressure



CASE STUDY 1: WORK 
PLANIFICATION

The execution of tests in all possible combinations would have
involved the performance of 15⋅4⋅3⋅3⋅3 = 1620 experiments.
Considering the performance of 3 replicas, to allow the
estimation of uncertainty and to give statistical relief to the
data, the number of trials would have risen to 1620⋅3 = 4860.
This amount of evidence was incompatible with the available
resources. We proceeded therefore considering two phases of
the work.

1st Phase (screening) Using a 2k-p = 25-1 plan to understand
which factors are significant and
which of these are the most
influential.

2nd Phase (deepening) 2-factor ANOVA with decomposition of
the quadratic sums and linearity
analysis.



CASE STUDY 1: FIRST PHASE 
SCREENING

• The first phase basically serves to reduce the number of factors.
Since we wanted to do three repetitions and still keep the resources
for the second phase, we worked with a 25-1 plan.

• The 32 combinations are split by subdivision into two blocks, of
which only one is tested. The 5-factor plan is then tested at the
price of one to 4, with 16 combinations and 16 · 3 = 48
experiments.

• Of the 31 (25-1) effects, one is lost (which can be chosen arbitrarily)
and there remain 30. These 30 are divided into 15 pairs aliases (24-
1) by two effects each.

• It is chosen to confuse the interaction between all the factors (it is
the effect that interests less, probably negligible).



CASE STUDY 1: FIRST PHASE 
SCREENING

Low level (0) High Level (1)

Factor A: film kind C72 Al 5083 alloy

Factor B: surface material GLS 20 RC 25

Factor C: temperature 22º C 50º C

Factor D: scroll speed 150 mm/min 1200 mm/min

Factor E: interface pressure Reference weight 4 (reference weight)



CASE STUDY 1: FIRST PHASE 
SCREENING

• I = ABCDE
• Alias pairs:
• A = BCDE; B = ACDE; C = ABDE; D = ABCE; E = ABCD;
• AB = CDE; AC = BDE; AD = BCE; AE = BCD; BC = ADE;
• BD = ACE; BE = ACD; CD = ABE; CE = ABD; DE = ABC
• Then we will see if the (=) should be replaced with a (+) or a (-).
• Resolution = 5, it is possible to evaluate main effects and

interactions between two factors
• Once this picture of alias pairs was accepted, the two blocks were

determined, starting from the main one. In this case (I = ABCDE) all
the combinations that have an even number of letters in Yates
notation are part of the main block.



CASE STUDY 1: FIRST PHASE 
SCREENING

The combinations of the main block were chosen
and the order of the trials was randomized. Once
the tests were carried out, the effects were
evaluated using the modified Yates algorithm.

Principal Block Secondary Block

1 cd a acd

ab ce b ace

ac de c ade

ad abcd d bcd

ae abce e bce

bc abde abc bde

bd acde abd cde

be bcde abe abcde



CASE STUDY 1: FIRST PHASE 
SCREENING

Yates 
Comb.

Tested 
Comb.

Results (1) (2) (3) (4) Effects

1 1 0.1892 0.40 0.74 1.65 3.30 0.2064 Average

a a(d) 0.2136 0.33 0.92 1.65 -0.22 -0.0272 A-BCDE

b b(d) 0.1717 0.61 0.74 -0.07 -0.82 -0.1024 B-ACDE

ab ab 0.1616 0.30 0.91 -0.15 0.42 0.0522 AB-CDE

c c(d) 0.3670 0.43 0.01 -0.38 0.35 0.0444 C-ABDE

ac ac 0.2443 0.30 -0.08 -0.44 -0.24 -0.0296 AC-BDE

bc bc 0.1317 0.61 0.00 0.13 -0.42 -0.0524 BC-ADE

abc abc(d) 0.1729 0.30 -0.15 0.29 0.23 0.0283 ABC-DE

e (d)e 0.2507 0.02 -0.07 0.18 0.00 -0.0002 E-ABCD

ae ae 0.1835 -0.01 -0.31 0.17 -0.08 -0.0104 AE-BCD

be be 0.1204 -0.12 -0.13 -0.10 -0.07 -0.0084 BE-ACD

abe ab(d)e 0.1831 0.04 -0.31 -0.14 0.16 0.0198 ABE-CD

ce ce 0.3823 -0.07 -0.03 -0.24 0.00 -0.0006 CE-ABD

ace ac(d)e 0.2304 0.06 0.16 -0.18 -0.05 -0.0057 ACE-BD

bce bc(d)e 0.1470 -0.15 0.13 0.20 0.06 0.0069 BCE-AD

abce abce 0.1530 0.01 0.16 0.03 -0.17 -0.0213 ABCE-D



CASE STUDY 1: FIRST PHASE 
SCREENING

SSQ DoF MSQ Fcalc p-value

SSBC 0.2575 15 0.0172 168.27 4.62E-24

A - BCDE 0.0089 1 0.0089 87.02 1.21E-08

B - ACDE 0.1259 1 0.1259 1234.32 3.92E-25

AB - CDE 0.0327 1 0.0327 320.20 3.16E-16

C - ABDE 0.0236 1 0.0236 231.42 3.35E-14

AC - BDE 0.0105 1 0.0105 103.35 1.51E-09

BC - ADE 0.0330 1 0.0330 323.28 2.74E-16

ABC - DE 0.0096 1 0.0096 94.39 4.57E-09

E - ABCD 0.0000 1 0.0000 0.01 94.02

AE - BCD 0.0013 1 0.0013 12.71 0.12

BE - ACD 0.0008 1 0.0008 8.28 0.71

ABE - CD 0.0047 1 0.0047 46.17 1.11E-05

CE - ABD 0.0000 1 0.0000 0.04 83.59

ACE - BD 0.0004 1 0.0004 3.83 5.90

BCE - AD 0.0006 1 0.0006 5.59 2.43

ABCE - D 0.0055 1 0.0055 53.48 2.59E-06

SSW 0.0033 32 0.0001

Total 0.2608 47



CASE STUDY 1: FIRST PHASE 
SCREENING

• A and B, C and D> 0, (friction increases with temperature
and speed), E <0 (the coefficient of friction decreases, very
weakly, with pressure).

• To evaluate significance, the usual parallelism was
considered with a monofactorial ANOVA of 16 (25-1) levels.
Subsequently, the decomposition of the SSBC is carried out.
Every single SSQi is of the type: (estimate) 2 · number of
repetitions · 2k-p-2 = (estimate)2 · 3 · 22 = (estimate)2 · 12.

• Of the factors, B (surface) is undoubtedly the most
significant, then we have C (temperature) and A (type of
film) and their interactions are also strong. Also the factor D
(velocity) is above the significance threshold, while E
(interface pressure) has a very high p-value.



CASE STUDY 1: FIRST PHASE 
SCREENING

The pie chart shows that the difference between
the results of the various treatments is essentially
attributable (for 88%, sector highlighted in the
figure) of the total to the factors A, B and C and
their interactions. D is also significant, but has far
less influence.



CASE STUDY 1: SECOND PHASE

• In the next phase we focused on factors A, B and C. We
made two-factor ANOVA analyzes (temperature and type of
film), taking into account 4 different sliding surfaces.

• Identify the surfaces that guarantee the lowest coefficient
of friction and a stable behavior in temperature.

• Evaluate the non-linearity with respect to temperature by
performing tests on 3 levels (22, 50 and 80 ° C).

Kind of Film (15 levels)

Te
m

p
er

at
u

re
(3

 le
ve

ls
)

45 Combinations

45 * 3=135 total tests



CASE STUDY 1: SECOND PHASE

• In the case of Alluminum alloy Al 5083:

• Strong significance for main effects and 
interaction.

SSQ DoF MSQ Fcalc. p-value

SSBR 2.6416 2 1.3208 2284 7.45E-76

SSBC 5.4938 14 0.3924 679 9.78E-83

Interacti
on

6.5276 28 0.2331 403 7.48E-81

Error 0.0520 90 0.0006

Total 14.7151 134



CASE STUDY 1: SECOND PHASE

• In the case of Alluminum alloy Al 5083:

Non-linear
Coeff. 
Increase per 
temp. 
increase

Linear
Coeff. 
Decreasing 
per temp. 
decreasing



CASE STUDY 1: SECOND PHASE

• In the case of aluminum alloy Al 5083:
• Evaluation of linearity: the SSBR (the only numerical

variable) is broken into two linear and quadratic
components: AL and AQ. A in this phase refers to the
row factor, the temperature, B to that of column, the
type of film. The orthonormal matrix has 2 rows (as
many as the DoF) and 45 columns (as many as the
combinations).

• Orthogonal:

• Orthonormal:



CASE STUDY 1: SECOND PHASE

• By applying the orthonormal matrix to the vector (45 x 
1) of the average results in the various combinations, 
we obtain:

• AL = 0,80; AQ = 0,49, from which
• SSQAL = (0,80)2·3 = 1.9269; SSQAQ = (0,49)2·3 = 0.7147

SSQ DoF MSQ Fcalc. p-value

SSBR 2.6416 2 1.3208 2284 7.45E-76

AL 1.9269 1 1.9269 3332 6.72E-71

AQ 0.7147 1 0.7147 1236 2.33E-52

SSBC 5.4938 14 0.3924 679 9.78E-83

Interaction 6.5276 28 0.2331 403 7.48E-81

Error 0.0520 90 0.0006

Total 14.7151 134



CASE STUDY 1: SECOND PHASE

Both the linear and the quadratic effects are significant,
the decomposition of the SSBR is shown below from a
graphical point of view. It is noted that the linear
component is still prevalent on the quadratic one. On the
other hand, however, a non-linearity component is
undoubtedly present, as is also clear from the graphs.



CASE STUDY 1: SECOND PHASE

• In the case of steel C72:

• Strong significance for main effects and 
interaction.

SSQ DoF MSQ Fcalc. p-value

SSBR 47.0056 2 23.5028 1181 2.57E-63

SSBC 8.0103 14 0.5722 29 3.34E-25

Interaction 6.8976 28 0.2463 12 2.31E-18

Error 1.7909 90 0.0199

Total 63.7044 134



CASE STUDY 1: SECOND PHASE

• In the case of steel C72:

• Non linearity

• Trend at high values of the coefficient of 
friction



CASE STUDY 1: SECOND PHASE

• By applying the orthonormal matrix (same as before) 
to the vector of the average results in the various 
combinations, we obtain:

• AL = 0,80; AQ = 0,49, from which

• SSQAL = (3,59)2·3 = 38,5978; SSQAQ = (1,67)2·3 = 8,4079

SSQ DoF MSQ Fcalc. p-value

SSBR 47.0056 2 23.50 1181 2.57E-63

AL 38.5978 1 38.60 1940 1.10E-60

AQ 8.4079 1 8.41 423 9.29E-34

SSBC 8.0103 14 0.57 29 3.34E-25

Interaction 6.8976 28 0.25 12 2.31E-18

Error 1.7909 90 0.02

Total 63.7044 134



CASE STUDY 1: SECOND PHASE

Both the linear and the quadratic effects are
significant, the decomposition of the SSBR is shown
below from a graphical point of view. The same
considerations as previously seen regarding the
prevalence of the linear contribution on the
quadratic one, however present, are valid.



CASE STUDY 1: SECOND PHASE

• In the case of the Nickel-T coating :

• Strong significance for main effects and 
interaction

SSQ DoF MSQ Fcalc. p-value

SSBR 0.0547 2 0.0273 680 4.71E-53

SSBC 0.2339 14 0.0167 416 2.71E-73

Interaction 0.1048 28 0.0037 93 7.16E-53

Error 0.0036 90 0.0000

Total 0.3971 134



CASE STUDY 1: SECOND PHASE

• In the case of the Nickel-T coating :

Stable behaviour

Values 
increasing with 
good linearity



CASE STUDY 1: SECOND PHASE

By applying the orthonormal matrix (same as before) to
the vector of the average results in the various
combinations, we obtain:

• AL = 0,134; AQ = 0,013, da cui

• SSQAL = (0,134)2·3 = 0,0541; SSQAQ = (0,013)2·3 = 6E-4

SSQ DoF MSQ Fcalc. p-value

SSBR 0.0547 2 0.0273 680 4.71E-53

AL 0.0541 1 0.0541 1347 6.25E-54

AQ 6E-4 1 6E-4 14 3.69E-02

SSBC 0.2339 14 0.0167 416 2.71E-73

Interaction 0.1048 28 0.0037 93 7.16E-53

Error 0.0036 90 4.02E-5

Total 0.3971 134



CASE STUDY 1: SECOND PHASE

Both the linear and the quadratic effects are
significant, the decomposition of the SSBR is
shown below from a graphical point of view. We
note that the quadratic component is almost
zero, just 1% compared to the linear one.



CASE STUDY 1: SECOND PHASE

• In the case of the METCO coating:

• Strong significance for main effects and 
interaction.

SSQ DoF MSQ Fcalc. p-value

SSBR 0.0994 2 0.0497 612 3.92E-51

SSBC 0.4473 14 0.0319 393 3.11E-72

Interaction 0.5439 28 0.0194 239 8.63E-71

Error 0.0073 90 0.0001

Total 1.0980 134



CASE STUDY 1: SECOND PHASE

• In the case of the METCO coating:

• Stable value of temperature
• Relative maximum at t = 50°C



CASE STUDY 1: SECOND PHASE

• By applying the orthonormal matrix (same as before) 
to the vector of the average results in the various 
combinations, we obtain:

• AL = 0,179; AQ = -0,032, from which
• SSQAL = (0,179)2·3 = 0,0963; 
• SSQAQ = (-0,032)2·3 = 0,0032

SSQ DoF MSQ Fcalc. p-value

SSBR 0.0994 2 0.0497 612 3.92E-51

AL 0.0963 1 0.0963 1186 1.32E-51

AQ 0.0032 1 0.0032 39 1.42E-06

SSBC 0.4473 14 0.0319 393 3.11E-72

Interaction 0.5439 28 0.0194 239 8.63E-71

Error 0.0073 90 0.0001

Total 1.0980 134



CASE STUDY 1: SECOND PHASE

Both the linear and the quadratic effects are
significant, the decomposition of the SSBR is
shown below from a graphical point of view. It is
noted that the quadratic component is almost
zero, just 3% compared to the linear one.



CASE STUDY 1: SECOND PHASE

• Final balance :
• Initially scheduled tests : 4860

• Tests actually implemented : 588
• (reduction of a factor of 9, -88%)

Preferable nickel-T and METCO coatings for values lower than
the dynamic coefficient of friction, as well as for better
stability in temperature with predominantly linear behavior
(even if a non-linearity component is always significant).

48 in Screening phase

540 in deepening phase



Questions


