Conference paper Open Access

Spectral X-ray CT for fast NDT using discrete tomography

Kamilis, Dimitris; Polydorides, Nick; Lee, Susanne; Desjardins, Joseph


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3408425</identifier>
  <creators>
    <creator>
      <creatorName>Kamilis, Dimitris</creatorName>
      <givenName>Dimitris</givenName>
      <familyName>Kamilis</familyName>
      <affiliation>University of Edinburgh</affiliation>
    </creator>
    <creator>
      <creatorName>Polydorides, Nick</creatorName>
      <givenName>Nick</givenName>
      <familyName>Polydorides</familyName>
      <affiliation>University of Edinburgh</affiliation>
    </creator>
    <creator>
      <creatorName>Lee, Susanne</creatorName>
      <givenName>Susanne</givenName>
      <familyName>Lee</familyName>
      <affiliation>Harris Corp.</affiliation>
    </creator>
    <creator>
      <creatorName>Desjardins, Joseph</creatorName>
      <givenName>Joseph</givenName>
      <familyName>Desjardins</familyName>
      <affiliation>Harris Corp.</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Spectral X-ray CT for fast NDT using discrete tomography</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <dates>
    <date dateType="Issued">2019-09-11</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3408425</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3408424</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;We present progress in fast, high-resolution imaging, material classification, and fault detection using hyperspectral X-ray measurements. Classical X-ray CT approaches rely on data from many projection angles, resulting in long acquisition and reconstruction times. Additionally, conventional CT cannot distinguish between materials with similar densities. However, in additive manufacturing, the majority of materials used are known a priori. This knowledge allows to vastly reduce the data collected and increase&lt;br&gt;
the accuracy of fault detection. In this context, we propose an imaging method for non-destructive testing of materials based on the combination of spectral X-ray CT and discrete tomography. We explore the use of spectral X-ray attenuation models and measurements to recover the characteristic functions of materials in heterogeneous media with piece-wise uniform composition. We show by means of numerical simulation that using spectral measurements from a small number of angles, our approach can alleviate the typical deterioration of spatial resolution and the appearance of streaking artifacts.&lt;/p&gt;</description>
  </descriptions>
</resource>
74
61
views
downloads
All versions This version
Views 7474
Downloads 6161
Data volume 46.7 MB46.7 MB
Unique views 6969
Unique downloads 5656

Share

Cite as