Conference paper Open Access

Visual Text Analytics for Technology and Innovation Management

Nazemi, Kawa; Burkhardt, Dirk


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Visual Text Analytics</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Technology Management</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Innovation Management</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Text Analysis</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Business Analytics</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Trend Analytics</subfield>
  </datafield>
  <controlfield tag="005">20200120174619.0</controlfield>
  <controlfield tag="001">3408391</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">13 September 2019</subfield>
    <subfield code="g">ORM2019</subfield>
    <subfield code="a">OpenRheinMain Conference</subfield>
    <subfield code="c">Darmstadt, Germany</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Darmstadt University of Applied Sciences</subfield>
    <subfield code="0">(orcid)0000-0002-6507-7899</subfield>
    <subfield code="a">Burkhardt, Dirk</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">582983</subfield>
    <subfield code="z">md5:1d66db9ed942585d0ff6747755e9c564</subfield>
    <subfield code="u">https://zenodo.org/record/3408391/files/ORM2019_ExtendedAbstract_Burkhardt.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://www.openrheinmain.org</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-09-13</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-h_da</subfield>
    <subfield code="p">user-h_da-vis</subfield>
    <subfield code="p">user-visual-trend-analytics</subfield>
    <subfield code="o">oai:zenodo.org:3408391</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Darmstadt University of Applied Sciences</subfield>
    <subfield code="0">(orcid)0000-0002-2907-2740</subfield>
    <subfield code="a">Nazemi, Kawa</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Visual Text Analytics for Technology and Innovation Management</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-h_da</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-h_da-vis</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-visual-trend-analytics</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Other (Attribution)</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Through coupling of Data Mining, Visual Analytics and Business Analytics techniques, we created a novel solution for strategic market analysis with focus on early trend recognition. As fundament, we are able to consider a variety of text data, as for instance research publications available from a number of (open access) digital libraries, reports and other data from companies, web data about markets as well as news from companies or social media data etc. In an advanced and unified processing pipeline, the information is extracted and mined for a variety of analytical purposes. Via an interactive analysis user-interface, domain experts are able to analysis strong and weak signals in perspective of upcoming trends.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3408390</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3408391</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
502
48
views
downloads
All versions This version
Views 502502
Downloads 4848
Data volume 28.0 MB28.0 MB
Unique views 465465
Unique downloads 3939

Share

Cite as