

Software Powering Network Experimentation

How Software Networks can help in improving reproducibility in ICT

Diego R. Lopez October 2018

Making Serious Science (and Engineering)

- Independent verification and reproducibility are essential to the scientific method
 - "Non-reproducible single occurrences are of no significance to science" (K. Popper)
- Complicated in many cases because different reasons
 - Ethical
 - Nature of the research field
- Recent computing and network results
 - Complexity
 - Disparate conditions

Essential Goals

Corroboration

- Avoid (un)intentional idiosyncratic results
- Repeatable results

Transparency

- Avoid (un)intentional biases
- Environment and measurements
- Repeatable methods

Robustness

- Avoid (un)intentional best-of-breed results
- Repeatable causes

The ICT Front

- Reproducible result reports are not common
 - Complex environments
 - Incomplete descriptions
 - Too-focused measurements
 - Limited variations
- This is not just an academic issue
 - Technology evaluation
 - Strategic planning
 - Multi-domain environments
 - While shortening the cycles

How Software Networks Come to Help

- More regular infrastructure
 - Easier to match environmental parameters
 - More homogeneous measurement points
- Model-based approaches
 - Consistent descriptions
 - Scalable verification
 - For environments and experiments
- And, well, software based
 - Virtualization as a transportation guarantee
 - o Open source

The OSM Example

LOCAL DEVELOPMENT &TESTING

Open Source MANO Images

Open development environment

- Functional tests
- Low cost
- Integration from the beginning

TEST POOL FOR DEVELOPERS

SERVICE PROVIDER

- Real servers and switches
- Performance tests (EPA can be enforced)
- Cost-effective shared infrastructure
- Move the value to VNF services

- Production/pre-production environment
- Real network scenarios
- Final service configuration
- > Fast deployment
- Low final integration cost

Applying network-aware CI/CD principles

- Development and testing
- Experiment description and sharing

5TONIC

- An open research and innovation ecosystem for 5G products and services
 - Created in 2015, based on the direct collaboration between Telefónica and IMDEA Networks
 - With a current roster of 10 members and 5 collaborators
- Intended to become a central hub for knowledge sharing and industry collaboration in the area of 5G technologies
 - Across the global Telefónica footprint
 - With direct participation of vertical representatives

The 5TONIC Software Network

- All 5TONIC infrastructure follows the Software Network principles
 - The only exception is dedicated physical devices for access technologies (radio, fiber...)

- Mini and single-board computers
 - VNF hosting, virtual switches and other network elements
- SDN-enabled switches
 - High performance fabric

- High-performance servers
 - Management, control, orchestration
 - Data analytics, high-end computational tasks
 - Experimental data storage and management

Multi-Site Model-Based Experimentation

- 5GINFIRE provides a multi-site testbed
 - Expanding through FIRE Open Calls
 - Experiment-driven
- Centralized service and function orchestration
 - Applying OSM
 - Completely model-based
- Multi-domain orchestration considered
 - Exploring different APIs: NFV, MEF...

The Current 5GINFIRE

A Few Challenges and Lessons Learned

- Security and trust issues in multi-domain scenarios
 - Consistent approach at all layers
- Acceptance and troubleshooting
 - Incorporating new sites and identifying causes
- Extend the model-based approach
 - Constructs for monitoring, measurement, telemetry...
 - Continuous integration at the orchestration and functional levels
 - Service continuity and model-based testing
- Connectivity matters
 - SDN in the WAN (not limited to a matter of trust)
 - Experimenter access to deployed functions
 - Function / infrastructure interactions: the SDN on NFV issues

Data Focus: The Mouseworld

- Generate sound, bespoke datasets
 - Validate close-loop control, especially AI-based ones
 - Train and evaluate ML in different network management scenarios
- Rely on Software Network principles
 - Traffic mix generation
 - Dataset collection
 - Dataset labelling
 - Training and validation loops

Powering Experimentation

- The Software Network opens several paths to improve network experimentation
 - And make it real science again
 - Avoid networking cold fusion
- Not only academic goals
 - Real engineering requires real science
- First steps taken
 - Towards model-driven experimentation

HAVE
YOU
TRIED
NOT
BEING
BORING?

GOOD IDEA.
I'LL MAKE
FIFTY SLIDES
OF PURE
EXCITEMENT.

