Dataset Open Access

Sensor data set radial forging at AFRC testbed v2

Christos Tachtatzis; Gordon Gourlay; Ivan Andonovic; Omer Panni


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">forming, forge, sensors, dynamic measurement, measurement uncertainty, sensor network, digital sensors, MEMS, machine learning</subfield>
  </datafield>
  <controlfield tag="005">20200124192625.0</controlfield>
  <controlfield tag="001">3405265</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Strathclyde</subfield>
    <subfield code="a">Gordon Gourlay</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Strathclyde</subfield>
    <subfield code="a">Ivan Andonovic</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NPL</subfield>
    <subfield code="a">Omer Panni</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">282484853</subfield>
    <subfield code="z">md5:549e0e2f365c51748373f265dff7b268</subfield>
    <subfield code="u">https://zenodo.org/record/3405265/files/STRATH radial forge dataset v2.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-09-11</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="p">user-met4fof</subfield>
    <subfield code="o">oai:zenodo.org:3405265</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Strathclyde</subfield>
    <subfield code="a">Christos Tachtatzis</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Sensor data set radial forging at AFRC testbed v2</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-met4fof</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;&lt;strong&gt;Sensor data set, radial forging at AFRC testbed&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;General information on the data set&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;Radial forging is widely used in industry to manufacture components for a broad range of sectors including automotive, medical, aerospace, rail and industrial. The Advanced Forming Research Centre (AFRC) at the University of Strathclyde, Glasgow, houses a GFM SKK10/R radial forge that has been used as a testbed for this project. Using two pairs of hammers operating at 1200 strokes/min, and providing a maximum forging force per hammer of 150 tons, the radial forge is capable of processing a range of metals, including steel, titanium and inconel. Both hollow and solid material can be formed with the added benefit of creating internal features on hollow parts using a mandrel. Parts can be formed at a range of temperatures from ambient temperature to 1200 &amp;deg;C.&lt;/p&gt;

&lt;p&gt;For the provided data set, a total of 81 parts were forged over one day of operation. A machine failure occurred during the forging of part number 70, and this part was re-run once the malfunction had been fixed. Each forged part was then measured using a CMM to provide dimensional output relative to a target specification and tolerances. The CMM records 18 dimensional measurements.&lt;/p&gt;

&lt;p&gt;The aim of the measurement setup is to predict the quality (in terms of dimensional properties) of the forged part from the sensor measurements during the forging process.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Structure of the data&lt;/strong&gt;&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;The sensor readings for the forging of the parts are provided in 81 csv files in the folder &amp;ldquo;Scope Traces&amp;rdquo;, named &amp;ldquo;Scope0001.csv&amp;rdquo; to &amp;ldquo;Scope0081.csv&amp;rdquo;. Each file contains the readings (columns) against time (rows). The first column displays the clock times (in milliseconds).&lt;/li&gt;
	&lt;li&gt;A commentary on the sensors is provided in the file &amp;ldquo;ForgedPartDataStructureSummaryv3.xlsx&amp;rdquo; &lt;strong&gt;(NOTE: Some columns do not have sensor descriptions as this information is not available).&lt;/strong&gt;&lt;/li&gt;
	&lt;li&gt;The CMM data is provided in the file &amp;ldquo;CMMData.xlsx&amp;rdquo;.&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;&lt;strong&gt;Further Information&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;For an introduction and tutorial to this data, a set of Jupyter notebooks is available here:&lt;/p&gt;

&lt;p&gt;&lt;a href="https://github.com/harislulic/Strathcylde_AFRC_machine_learning_tutorials/releases/tag/v2.0"&gt;https://github.com/harislulic/Strathcylde_AFRC_machine_learning_tutorials/releases/tag/v2.0&lt;/a&gt;&lt;/p&gt;

&lt;p&gt;These notebooks contain Python code and a documentation of example machine learning tasks and analysis of this data set.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.2573860</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3405265</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
493
80
views
downloads
All versions This version
Views 493264
Downloads 8039
Data volume 22.5 GB11.0 GB
Unique views 391212
Unique downloads 6537

Share

Cite as