Dataset Open Access

Sensor data set radial forging at AFRC testbed v2

Christos Tachtatzis; Gordon Gourlay; Ivan Andonovic; Omer Panni


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3405265</identifier>
  <creators>
    <creator>
      <creatorName>Christos Tachtatzis</creatorName>
      <affiliation>University of Strathclyde</affiliation>
    </creator>
    <creator>
      <creatorName>Gordon Gourlay</creatorName>
      <affiliation>University of Strathclyde</affiliation>
    </creator>
    <creator>
      <creatorName>Ivan Andonovic</creatorName>
      <affiliation>University of Strathclyde</affiliation>
    </creator>
    <creator>
      <creatorName>Omer Panni</creatorName>
      <affiliation>NPL</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Sensor data set radial forging at AFRC testbed v2</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>forming, forge, sensors, dynamic measurement, measurement uncertainty, sensor network, digital sensors, MEMS, machine learning</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-09-11</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3405265</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.2573860</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/met4fof</relatedIdentifier>
  </relatedIdentifiers>
  <version>1.0</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;&lt;strong&gt;Sensor data set, radial forging at AFRC testbed&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;General information on the data set&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;Radial forging is widely used in industry to manufacture components for a broad range of sectors including automotive, medical, aerospace, rail and industrial. The Advanced Forming Research Centre (AFRC) at the University of Strathclyde, Glasgow, houses a GFM SKK10/R radial forge that has been used as a testbed for this project. Using two pairs of hammers operating at 1200 strokes/min, and providing a maximum forging force per hammer of 150 tons, the radial forge is capable of processing a range of metals, including steel, titanium and inconel. Both hollow and solid material can be formed with the added benefit of creating internal features on hollow parts using a mandrel. Parts can be formed at a range of temperatures from ambient temperature to 1200 &amp;deg;C.&lt;/p&gt;

&lt;p&gt;For the provided data set, a total of 81 parts were forged over one day of operation. A machine failure occurred during the forging of part number 70, and this part was re-run once the malfunction had been fixed. Each forged part was then measured using a CMM to provide dimensional output relative to a target specification and tolerances. The CMM records 18 dimensional measurements.&lt;/p&gt;

&lt;p&gt;The aim of the measurement setup is to predict the quality (in terms of dimensional properties) of the forged part from the sensor measurements during the forging process.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Structure of the data&lt;/strong&gt;&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;The sensor readings for the forging of the parts are provided in 81 csv files in the folder &amp;ldquo;Scope Traces&amp;rdquo;, named &amp;ldquo;Scope0001.csv&amp;rdquo; to &amp;ldquo;Scope0081.csv&amp;rdquo;. Each file contains the readings (columns) against time (rows). The first column displays the clock times (in milliseconds).&lt;/li&gt;
	&lt;li&gt;A commentary on the sensors is provided in the file &amp;ldquo;ForgedPartDataStructureSummaryv3.xlsx&amp;rdquo; &lt;strong&gt;(NOTE: Some columns do not have sensor descriptions as this information is not available).&lt;/strong&gt;&lt;/li&gt;
	&lt;li&gt;The CMM data is provided in the file &amp;ldquo;CMMData.xlsx&amp;rdquo;.&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;&lt;strong&gt;Further Information&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;For an introduction and tutorial to this data, a set of Jupyter notebooks is available here:&lt;/p&gt;

&lt;p&gt;&lt;a href="https://github.com/harislulic/Strathcylde_AFRC_machine_learning_tutorials/releases/tag/v2.0"&gt;https://github.com/harislulic/Strathcylde_AFRC_machine_learning_tutorials/releases/tag/v2.0&lt;/a&gt;&lt;/p&gt;

&lt;p&gt;These notebooks contain Python code and a documentation of example machine learning tasks and analysis of this data set.&lt;/p&gt;</description>
  </descriptions>
</resource>
493
80
views
downloads
All versions This version
Views 493264
Downloads 8039
Data volume 22.5 GB11.0 GB
Unique views 391212
Unique downloads 6537

Share

Cite as